Iwasawa invariants of galois deformations
نویسنده
چکیده
of the absolute Galois group of a number field F . Assume that ρ̄ is ordinary in the sense that the image of any decomposition group at a place v dividing p lies in some Borel subgroup Bv of G. Assume also that ρ̄ satisfies the conditions of [11, Section 7] which guarantee that it has a reasonable deformation theory; see Section 3.1 for details. In this paper we show that the Iwasawa invariants of the Selmer group of a nearly ordinary deformation of ρ̄ depends only on ρ̄ and the tame ramification of the deformation. For a precise statement, let H denote the set of nearly ordinary (with respect to the Bv) deformations of ρ̄ to continuous finitely ramified representations ρ : GF → G(O ) over the ring of integers O of the maximal totally ramified extension of K. Fix an algebraic representation r : G → GLn such that [F : Q] divides ∑
منابع مشابه
Kida’s Formula and Congruences
Let f be a modular eigenform of weight at least two and let F be a finite abelian extension of Q. Fix an odd prime p at which f is ordinary in the sense that the p Fourier coefficient of f is not divisible by p. In Iwasawa theory, one associates two objects to f over the cyclotomic Zp-extension F∞ of F : a Selmer group Sel(F∞, Af ) (whereAf denotes the divisible version of the two-dimensional G...
متن کاملOn the equivariant Tamagawa number conjecture in tame CM-extensions, II
We use the notion of non-commutative Fitting invariants to give a reformulation of the equivariant Iwasawa main conjecture (EIMC) attached to an extension F/K of totally real elds with Galois group G, where K is a global number eld and G is a p-adic Lie group of dimension 1 for an odd prime p. We attach to each nite Galois CM-extension L/K with Galois group G a module SKu(L/K) over the center o...
متن کاملOn the Structure of Selmer Groups of Λ-Adic Deformations over p-Adic Lie Extensions
In this paper, we consider the Λ-adic deformations of Galois representations associated to elliptic curves. We prove that the Pontryagin dual of the Selmer group of a Λ-adic deformation over certain p-adic Lie extensions of a number field, that are not necessarily commutative, has no non-zero pseudo-null submodule. We also study the structure of various arithmetic Iwasawa modules associated to ...
متن کاملComputation of Iwasawa ν-invariants of certain real abelian fields
Let p be a prime number and k a finite extension of Q. It is conjectured that Iwasawa invariants λp(k) and μp(k) vanish for all p and totally real number fields k. Using cyclotomic units and Gauss sums, we give an effective method for computing the other Iwasawa invariants νp(k) of certain real abelian fields. As numerical examples, we compute Iwasawa invariants associated to k = Q( √ f, ζp + ζ...
متن کاملO ct 2 00 6 Global Units modulo Circular Units : descent without Iwasawa ’ s Main Conjecture . ∗
Iwasawa’s classical asymptotical formula relates the orders of the p-parts Xn of the ideal class groups along a Zp-extension F∞/F of a number field F , to Iwasawa structural invariants λ and μ attached to the inverse limit X∞ = lim ← Xn. It relies on ”good” descent properties satisfied by Xn. If F is abelian and F∞ is cyclotomic it is known that the p-parts of the orders of the global units mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005