Eye movement statistics in humans are consistent with an optimal search strategy.
نویسندگان
چکیده
Most models of visual search are based on the intuition that humans choose fixation locations containing features that best match the features of the target. The optimal version of this feature-based strategy is what we term "maximum a posteriori (MAP) search." Alternatively, humans could choose fixations that maximize information gained about the target's location. We term this information-based strategy "ideal search." Here we compare eye movements of human, MAP, and ideal searchers in tasks where known targets are embedded at unknown locations within random backgrounds having the spectral characteristics of natural scenes. We find that both human and ideal searchers preferentially fixate locations in a donut-shaped region around the center of the circular search area, with a high density of fixations at top and bottom, while MAP searchers distribute their fixations more uniformly, with low density at top and bottom. Our results argue for a sophisticated search mechanism that maximizes the information collected across fixations.
منابع مشابه
Simple summation rule for optimal fixation selection in visual search
When searching for a known target in a natural texture, practiced humans achieve near-optimal performance compared to a Bayesian ideal searcher constrained with the human map of target detectability across the visual field [Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391]. To do so, humans must be good at choosing where to fixate dur...
متن کاملOptimal and human eye movements to clustered low value cues to increase decision rewards during search
Rewards have important influences on the motor planning of primates and the firing of neurons coding visual information and action. When eye movements to a target are differentially rewarded across locations, primates execute saccades towards the possible target location with the highest expected value, a product of sensory evidence and potentially earned reward (saccade to maximum expected val...
متن کاملHuman foraging behavior: A virtual reality investigation on area restricted search in humans
The control of attention and the control of movement in space share a similar optimal control structure—mediating the tradeoff between exploiting one locale and exploring others. A common spatial foraging strategy observed in many species is area-restricted search, in which animals respond to resources or their absence by moving between local and global search strategies, respectively. When res...
متن کاملHuman Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets
Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human obs...
متن کاملMammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vision
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2008