GENETIC TRANSFORMATION AND HYBRIDIZATION Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae

نویسندگان

  • R. Wu
  • Jihong Liu
  • B. Liu
چکیده

Genetic instability could be provoked as an unintended consequence of genetic engineering in plants. Here, we report that the rice endogenous long terminal repeat (LTR) retrotransposon Tos17 was transpositionally activated only in transgenic calli and their regenerated plants produced by biolistic transformation in rice (Oryza sativa L.) ssp. japonica cv. Matsumae. Moreover, the transpositional activity of Tos17 was sustained after plant regeneration in the T0 generation, and produced new germinal insertions. In contrast, the element remained totally quiescent in calli and regenerated plants from tissue culture of this genotype. Nonetheless, transcriptional induction and cytosine demethylation of Tos17 were found to have occurred with no significant difference in both kinds of calli, tissue culture alone and transgenic. This suggests that callus culture is likely to have played an important role in destabilizing Tos17 in the direction towards transpositional activation, but that biolistic transformation is the direct causal factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Chitinase Gene LOC_Os11g47510 from Indica Rice Tetep Provides Enhanced Resistance against Sheath Blight Pathogen Rhizoctonia solani in Rice

Sheath blight disease (ShB), caused by the fungus Rhizoctonia solani Kühn, is one of the most destructive diseases of rice (Oryza sativa L.), causing substantial yield loss in rice. In the present study, a novel rice chitinase gene, LOC_Os11g47510 was cloned from QTL region of R. solani tolerant rice line Tetep and used for functional validation by genetic transformation of ShB susceptible japo...

متن کامل

Stable genetic transformation of garlic plants using particle bombardment.

The improvement of garlic plants (Allium sativum L.) via biotechnological approaches is currently limited by the lack of an applicable direct gene transfer system. In this paper, we present the development of a genetic transformation system using particle bombardment for gene delivery and immature clove-derived callus as the gene target. Plasmid DNA (pBI221.23), containing the selectable "hpt" ...

متن کامل

Study of factors affecting direct shoot regeneration of pear (Pyrus communis L.)

Conventional methods of pear breeding, largely based on intra- and inter-specific hybridization, are difficult because pear is highly heterozygous, polygenic and has a long juvenile period. Genetic improvements of pear cultivars are possible through induction of mutations and gene transfer by genetic engineering. A general prerequisite for these approaches is to establish an efficient plant reg...

متن کامل

بهینه‌سازی انتقال ژن به ارقام گلابی (Pyrus communis L.) با استفاده از ژن گزارشگر gus

Nowadays, genetic engineering methods are able to reduce the time of breeding programs for improvement of fruit trees, as well as offering a focused breeding system. The purpose of the present investigation was to study the factors that affect Agrobacterium tumefacience mediated transformation of two pear cultivars: Bartlett and Harrow Delight. Two explants (leaves and axillary shoot meristems)...

متن کامل

Transformation of Filamentous Fungi by Microprojectile Bombardment

The vast majority of transformation protocols for filamentous fungi are based on permeabilizing cell membranes with polyethylene glycol (PEG) or electroporation. Both methods typically require preparing protoplasts or osmotically sensitive cells prior to transformation (Herzog et al., 1996; Goldman et al., 1990; a detailed review of fungal transformation systems is given by Lemke and Peng, 1995...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009