WLS-ENO: Weighted-least-squares based essentially non-oscillatory schemes for finite volume methods on unstructured meshes
نویسندگان
چکیده
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes are widely used high-order schemes for solving partial differential equations (PDEs), especially hyperbolic conservation laws with piecewise smooth solutions. For structured meshes, these techniques can achieve high order accuracy for smooth functions while being non-oscillatory near discontinuities. For unstructured meshes, which are needed for complex geometries, similar schemes are required but they are much more challenging. We propose a new family of non-oscillatory schemes, called WLS-ENO, in the context of solving hyperbolic conservation laws using finite-volume methods over unstructured meshes. WLS-ENO is derived based on Taylor series expansion and solved using a weighted least squares formulation. Unlike other non-oscillatory schemes, the WLS-ENO does not require constructing sub-stencils, and hence it provides more flexible framework and is less sensitive to mesh quality. We present rigorous analysis of the accuracy and stability of WLS-ENO, and present numerical results in 1-D, 2-D, and 3-D for a number of benchmark problems, and also report some comparisons against WENO.
منابع مشابه
A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids
a r t i c l e i n f o This paper presents a shock detection technique based on Moving Least Squares reproducing kernel approximations. The multiresolution properties of these kinds of approximations allow us to define a wavelet function to act as a smoothness indicator. This MLS sensor is used to detect the shock waves. When the MLS sensor is used in a finite volume framework in combination wit...
متن کاملEssentially Non-Oscillatory Adaptive Tree Methods
We develop high order essentially non-oscillatory (ENO) schemes on non-uniform meshes based on generalized binary trees. The idea is to adopt an appropriate data structure which allows to communicate information easily between unstructured data structure and virtual uniform meshes. While the generalized binary trees as an unstructured data structure can store solution information efficiently if...
متن کاملMaximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملWeighted Essentially Non-Oscillatory Schemes on Triangular Meshes
In this paper we construct high order weighted essentially non-oscillatory (WENO) schemes on two dimensional unstructured meshes (triangles) in the finite volume formulation. We present third order schemes using a combination of linear polynomials, and fourth order schemes using a combination of quadratic polynomials. Numerical examples are shown to demonstrate the accuracies and robustness of ...
متن کاملA Robust Reconstruction for Unstructured WENO Schemes
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 314 شماره
صفحات -
تاریخ انتشار 2016