Posttranslational mechanisms contribute to the suppression of specific cyclin:CDK complexes by all-trans retinoic acid in human bronchial epithelial cells.

نویسندگان

  • N Sueoka
  • H Y Lee
  • G L Walsh
  • W K Hong
  • J M Kurie
چکیده

Retinoids have demonstrated activity in the chemoprevention of aerodigestive tract cancer. Potentially contributing to their lung cancer chemopreventive effects, retinoids inhibit the growth of human bronchial epithelial (HBE) cells. We observed previously that all-trans retinoic acid (t-RA) arrests the growth of HBE cells in the G0 phase of the cell cycle through activation of retinoic acid receptor-dependent pathways, which enhances the association of E2F-4 with retinoblastoma protein family members, converting E2F into a transcriptional suppressor. In this study, we examined the mechanism by which t-RA blocks cell cycle progression in HBE cells and the possibility that this signaling event is blocked in non-small cell lung cancer (NSCLC) cells that are refractory to the growth inhibitory effects of t-RA. t-RA suppressed the expression and activity of cyclin D1, cyclin E, and cyclin-dependent kinases (CDK)-2 and CDK-4, increased expression of the CDK inhibitor p27, and shifted the retinoblastoma protein to a hypophosphorylated form. Posttranslational mechanisms contributed to the changes in CDK-2, CDK-4, and p27 levels, which, in the case of CDK-4, involved the ubiquitin-proteasome pathway. In contrast, despite retinoic acid receptor transcriptional activation, these signaling events did not occur in a NSCLC cell line that is refractory to growth inhibition by t-RA. These findings provide the first evidence that t-RA activates degradation of CDK-4 through the ubiquitin-proteasome pathway, a novel mechanism by which t-RA causes HBE cells to exit the cell cycle, and blockade of these signaling events may contribute to the development of retinoid resistance in NSCLC cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism.

The retinoids are reported to reduce incidence of second primary aerodigestive cancers. Mechanisms for this chemoprevention are previously linked to all-trans retinoic acid (RA) signaling growth inhibition at G1 in carcinogen-exposed immortalized human bronchial epithelial cells. This study investigated how RA suppresses human bronchial epithelial cell growth at the G1-S cell cycle transition. ...

متن کامل

The Effect of Retinoic Acid on Seminal Vesicle Epithelial Cell

Purpose: The seminal vesicles are androgen dependent exocrine glands producing protein-rich secretion. The retinoic acid has been implicated as a signaling molecule for the seminal vesicle development. In the present study, the effect of retinoic acid on seminal vesicle epithelial cell of neonatal mouse was investigated. Materials and Methods: Newborn male N-MRI mice were injected intraperiton...

متن کامل

تاثیر غلظت‌های مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلول‌های بنیادی فولیکول‌ موی موش سوری

Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...

متن کامل

تأثیر اسیدرتینوئیک ترانس در اپی‌تلیزاسیون بافت بلاستما در شرایط آزمایشگاهی (برون‌تنی)

  Background and Objectives: Retinoic acid has a major role in a variety of biological processes including growth and differentiation. One of these effects is epithelialization seen in blastema tissue exposed to different concentration of retinoic acid, due to its embryo-like cells. The main objective of this research was to investigate an experimental studies of employed different concentratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 59 15  شماره 

صفحات  -

تاریخ انتشار 1999