[Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method].

نویسندگان

  • Suyong Re
  • Yuji Sugita
چکیده

Reversible phosphorylation of proteins is a post-translational modification that regulates diverse biological processes. The molecular mechanism underlying phosphoryl transfer catalyzed by enzymes, in particular the nature of transition state (TS), remains a subject of active debate. Structural evidence supports an associative TS, whereas physical organic studies point to a dissociative character. In this article, we briefly introduce our recent effort using the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to resolve the controversy. We perform QM/MM simulations for the reversible phosphorylation of phosphoserine phosphatase (PSP), which belongs to one of the largest phosphotransferase families characterized to data. Both phosphorylation and dephosphorylation reactions are investigated based on the two-dimensional energy surfaces along phosphoryl and proton transfer coordinates. The resultant structures of the active site at TS in both reactions have compact geometries but a less electron density of the phosphoryl group. This suggests that the TS of PSP has a geometrically associative yet electronically dissociative character and strongly depends on proton transfer being coupled with phosphoryl transfer. Structure and literature database searches on phosphotransferases suggest that such a hybrid TS is consistent with many structures and physical organic studies and likely holds for most enzymes catalyzing phosphoryl transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Specific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions:  H, O, and P Atoms.

A semiempirical AM1/d Hamiltonian is developed to model phosphoryl transfer reactions catalyzed by enzymes and ribozymes for use in linear-scaling calculations and combined quantum mechanical/molecular mechanical simulations. The model, designated AM1/d-PhoT, is parametrized for H, O, and P atoms to reproduce high-level density-functional results from a recently constructed database of quantum ...

متن کامل

QM/MM Study on the Mechanism of Aminophenol Oxidation by Functionalized β-Cyclodextrin as Oxidase Nanomimic

In this study, functionalized β-cyclodextrin (β-CD) by aldehyde group was investigated as an oxidase enzyme mimic for the amino phenol oxidation. All calculations were performed by GAUSSIAN 09 package using two layers ONIOM method at the ONIOM (MPW1PW91/6-311++G(d,p)/UFF) level. In the first step, H2O2 is encapsulated in the hydrophobic cavity. In the second step, H2<...

متن کامل

Phosphoryl Exchange Reaction Catalyzed by Enzyme I of the Bacterial Phosphoeno 1 pyruvate : Sugar Phosphotransferase System

Enzyme I of the bacterial phosphoenolpyruvate: sugar phosphotransferase system catalyzes phosphoryl transfer from phosphoenolpyruvate to the heat-stable phosphoryl carrier protein, HPr. Enzyme I also catalyzes a rapid phosphoryl exchange reaction in which the phosphoryl moiety of phosphoenolpyruvate is transferred to pyruvate. Additionally, Enzyme I plus HPr catalyze the slow hydrolysis of pho...

متن کامل

Metal Fluorides: Tools for Structural and Computational Analysis of Phosphoryl Transfer Enzymes

The phosphoryl group, PO3-, is the dynamic structural unit in the biological chemistry of phosphorus. Its transfer from a donor to an acceptor atom, with oxygen much more prevalent than nitrogen, carbon, or sulfur, is at the core of a great majority of enzyme-catalyzed reactions involving phosphate esters, anhydrides, amidates, and phosphorothioates. The serendipitous discovery that the phospho...

متن کامل

A computational study of the phosphoryl transfer reaction between ATP and Dha in aqueous solution.

Phosphoryl transfer reactions are ubiquitous in biology, being involved in processes ranging from energy and signal transduction to the replication genetic material. Dihydroxyacetone phosphate (Dha-P), an intermediate of the synthesis of pyruvate and a very important building block in nature, can be generated by converting free dihydroxyacetone (Dha) through the action of the dihydroxyacetone k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan

دوره 131 8  شماره 

صفحات  -

تاریخ انتشار 2011