Object Recognition Based on Optimized Gabor Features and SVM
نویسندگان
چکیده
This paper proposes an optimized Gabor features and SVM based framework for object recognition. When discriminative features are extracted at optimized locations using tuned Gabor wavelets, classifications are done via SVM. Compared to conventional Gabor feature based object recognition system, the system developed in this paper is both robust and efficient. The proposed framework has been successfully applied to two object recognition applications, i.e. face/non-face classification and face recognition. Experimental results clearly show advantages of the proposed method over other approaches.
منابع مشابه
Object Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملA SVM Face Recognition Method Based on Optimized Gabor Features
A novel Support Vector Machine (SVM) face recognition method using optimized Gabor features is presented in this paper. 200 Gabor features are first selected by a boosting algorithm, which are then combined with SVM to build a two-class based face recognition system. While computation and memory cost of the Gabor feature extraction process has been significantly reduced, our method has achieved...
متن کاملA neural 3-D object recognition architecture using optimized Gabor filters
We present an object recognition architecture based on feature extraction by Gabor filter kernels and feature classification by an artificial neural network. The parameters of the Gabor filters are optimized to the specific problem by minimizing an energy function. Such Gabor filters extract features that can be more easily classified by the neural network. Moreover the feature space is low-dim...
متن کاملOptimal Features Subset Selection and Classification for Iris Recognition
The selection of the optimal features subset and the classification have become an important issue in the field of iris recognition. We propose a feature selection scheme based on the multiobjectives genetic algorithm (MOGA) to improve the recognition accuracy and asymmetrical support vector machine for the classification of iris patterns. We also suggest a segmentation scheme based on the coll...
متن کاملتشخیص چهره با استفاده از PCA و فیلتر گابور
Methods for face recognition which are based on face structure are among techniques without supervision and produce unfavorable results in the presence of linear changes in images. PCA is a linear transform and a powerful tool for data analysis but does not produce good results for face recognition when there are non-linear changes resulting from changes in position, intensity and gesture in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007