Lasing and suppressed cavity-pulling effect of Cesium active optical clock
نویسندگان
چکیده
We experimentally demonstrate the collective emission behavior and suppressed cavity-pulling effect of four-level active optical clock with Cesium atoms. Thermal Cesium atoms in a glass cell velocity selective pumped with a 455.5 nm laser operating at 6S1/2 to 7P3/2 transition are used as lasing medium. Population inverted Cesium atoms between 7S1/2 and 6P3/2 levels are optical weakly coupled by a pair cavity mirrors working at deep bad-cavity regime with a finesse of 4.3, and the ratio between cavity bandwidth and gain bandwidth is approximately 45. With increased 455.5 nm pumping laser intensity, the output power of cesium active optical clock at 1469.9 nm from 7S1/2 level to 6P3/2 level shows a threshold and reach a power of 13 μW. Active optical clock would dramatically improve the optical clock stability since the lasing frequency does not follow the cavity length variation exactly, but in a form of suppressed cavity pulling effect. In this letter the cavity pulling effect is measured using a Fabry-Perot interferometer (FPI) to be reduced by a factor of 38.2 and 41.4 as the detuning between the 1469.9 nm cavity length of the Cs active optical clock and the Cs 1469.9 nm transition is set to be 140.8 MHz and 281.6 MHz respectively. The mechanism demonstrated here is of great significance for new generation optical clocks and can be applied to improve the stability of best optical clocks by at least two orders of magnitude. © 2014 Optical Society of America OCIS codes: (270,0270) Quantum optics; (140.5560) Pumping; (290,3700) Linewidth. References and links 1. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010). 2. N. Huntemann, M. Okhapkin, B. Lipphardt, S. Weyers, Chr. Tamm, and E. Peik, “High-accuracy optical clock based on the octupole transition in 171Yb+,” Phys. Rev. Lett. 108, 090801 (2012). 3. P. Dubé, A. A. Madej, Z. Zhou, and J. E. Bernard, “Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level,” Phys. Rev. A 87, 023806 (2013). 4. KeLin Gao, “Optical frequency standard based on a single 40Ca+ ,” Chinese Science Bulletin, 58, 853-863 (2013). 5. H. S. Margolis, “Optical frequency standards and clocks,” Contemporary Physics 51 37-58 (2010). 6. M. Takamoto, T. Takano, and H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5, 288-292 (2011). 7. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1× 10−17 stability at 103 s,”Phys. Rev. Lett. 109, 230801 (2012). 8. T. Middelmann, S. Falke, C. Lisdat, and U. Sterr, “High accuracy correction of blackbody radiation shift in an optical lattice clock,” Phys. Rev. Lett. 109, 263004 (2012). 9. J. J. McFerran, L. Yi, S. Mejri, S. Di Manno, W. Zhang, J. Guena, Y. Le Coq, and S. Bize, “Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty= 5.7×10−15 ,” Phys. Rev. Lett. 108, 183004 (2012). 10. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, “An atomic clock with 10−18 instability,” Science 341, 1215-1218 (2013). 11. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10−18 level,” Nature 000. 1-5 (2014). 12. D. Yu and J. Chen, “Optical clock with millihertz linewidth based on a phase-matching effect,” Phys. Rev. Lett. 98, 050801 (2007). 13. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983). 14. B. Young, F. Cruz, W. Itano, J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999). 15. Y. Jiang, A. Ludlow, N. Lemke, R. Fox, J. Sherman, L. Ma, and C. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photon. 5 158-161 (2011). 16. T. Kessler, C. Hagemann, C.Grebing, T. Legero, U.Sterr, F.Riehle, M. J. Martin, L.Chen, and J. Ye, “A sub-40mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photon. 6 687-692 (2012). 17. S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman , “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815 (1994). 18. J. Chen and X. Chen, “Optical lattice laser,” Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition(IEEE, New York, 2005), 608-610. 19. W. Zhuang, and J. Chen, “Beyond one-second laser coherence via active optical atomic clock,” Proceedings of the 20th European Frequency and Time Forum (Braunschweig, Germany, 2006), 373-375. 20. W. Zhuang, D. Yu, and J. Chen, “Optical clocks based on quantum emitters, ” Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition(Miami, Florida, 2006), 277-280. 21. W. Zhuang, D. Yu, Z. Chen, K. Huang, and J. Chen. “Proposed active optical frequency standards based on magneto-optical trap trapped atoms,” Proceedings of the IEEE Frequency Control Symposium & European Frequency and Time Forum (Geneva,. Switzerland, 2007), 96-99. 22. D. Yu and J. Chen, “Laser theory with finite atom-field interacting time,” Phys. Rev. A 78, 013846 (2008). 23. J. Chen, “Active optical clocks,” in Frequency Standards and Metrology: Proceedings of the 7th Symposium, edited by Maleki Lute (World Scientic, Singapore, 2009), 525-531. 24. J. Chen, “Active optical clock,” Chin. Sci. Bull. 54, 348-352 (2009). 25. Y. Wang, “Optical clocks based on stimulated emission radiation,” Chin. Sci. Bull. 54, 347 (2009). 26. D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, “Prospects for a millihertz-linewidth laser,” Phys. Rev. Lett. 102, 163601 (2009). 27. Uwe Sterr and Christian Lisdat, “Millihertz-linewidth lasers: A sharper laser,” Nature physics 5, 382-383 (2009). 28. D. Meiser and M. J. Holland, “Steady-state superradiance with alkaline-earth-metal atoms,” Phys. Rev. A 81, 033847 (2010). 29. D. Meiser and M. J. Holland, “Intensity fluctuations in steady-state superradiance,” Phys. Rev. A 81, 063827 (2010). 30. D. Yu and J. Chen, “Four-level superradiant laser with full atomic cooperativity,” Phys. Rev. A 81, 053809 (2010). 31. D. Yu and J. Chen, “ Theory of quenching quantum fluctuations of a laser system with a ladder-type configuration,” Phys. Rev. A 81, 023818 (2010). 32. X. Xie, W. Zhuang, and J. Chen, “Adiabatic passage based on the Calcium active optical clock,” Chin. Phys. Lett. 27, 074202 (2010). 33. W. Zhuang and J. Chen, “Progress of active optical frequency standard based on thermal Ca atomic beam,” Proceedings of 2010 IEEE International Frequency Control Symposium(Newport Beach, California, 2010), p. 222-223. 34. W. Zhuang, T. Zhang, and J. Chen, “Active ion optical clock,” arXiv:1111.4704 (2011). 35. W. Zhuang, J. Chen, “Feasibility of extreme ultraviolet active optical clock,” Chin. Phys. Lett. 28 080601 (2011). 36. Yang Li, Wei Zhuang, Jinbiao Chen, Hong Guo, “The linewidth of Ramsey laser with bad cavity,” arXiv:1001.2670 (2010). 37. J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, “A steady-state superradiant laser with less than one intracavity photon,” Nature 484, 78-81 (2012). 38. J. G. Bohnet, Z. Chen, J. M. Weiner, K. C. Cox, and J. K. Thompson, “Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser,” Phys. Rev. Lett. 109, 253602 (2012). 39. Y. Wang X. Xue, D. Wang, T. Zhang, Q. Sun, Y. Hong, W. Zhuang, and J. Chen, “Cesium active optical clock in four-level laser configuration” in Proceedings of 2012 IEEE International Frequency Control Symposium(Baltimore, Maryland, 2012), p. 1-4. 40. X. Zang, T. Zhang, and J. Chen, “Magic wavelengths for a lattice trapped Rubidium four-Level active optical clock,” Chin. Phys. Lett. 29, 090601 (2012). 41. G. A. Kazakov, and T. Schumm, “Active optical frequency standard using sequential coupling of atomic ensembles,” Phys. Rev. A 87, 013821 (2013). 42. J. G. Bohnet, Z. Chen, J. M. Weiner, K. C. Cox, and J. K. Thompson, “ Active and passive sensing of collective atomic coherence in a superradiant laser,” Phys. Rev. A 88, 013826 (2013). 43. J. G. Bohnet, Z. Chen, J. M. Weiner, K. C. Cox, and J. K. Thompson, “ Linear-response theory for superradiant lasers,” Phys. Rev. A 89, 013806 (2014). 44. T. Zhang, Y. Wang, X. Zang, W. Zhuang, and J. Chen, “Active optical clock based on four-level quantum system,” Chin. Sci. Bull. 58, 2033-2038 (2013). 45. S. Zhang, Y. Wang, T. Zhang, W. Zhuang and J. Chen, “A Potassium atom four-Level active optical clock scheme,” Chin. Phys. Lett. 30, 040601 (2013). 46. Y. Wang, D. Wang, T. Zhang, Y. Hong, S. Zhang, Z. Tao, X. Xie, and J. Chen, “Realization of population inversion between 7S1/2 and 6P3/2 levels of cesium for four-level active optical clock,” Science China, Physics, Mechanics and Astronomy 56, 1107-1110 (2013). 47. Z. Xu, W. Zhuang, Y. Wang, D. Wang, X. Zhang, X. Xue, D. Pan, and J. Chen, “Lasing of Cesium four-level active optical clock,” Joint IEEE International Frequency Control Symposium & European Frequency and Time Forum(Prague, Czech Repblic, 2013), p. 395-398. 48. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J.Chen, “Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth,” Opt. Lett. 37, 4059-4061 (2012). 49. Y. Wang, X. Zhang, D. Wang, Z. Tao, W. Zhuang, and J. Chen, “Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm,” Opt. Express 20, 25817-25825 (2012). 50. D. Wang, Y. Wang, Z. Tao, S. Zhang, Y. Hong, W. Zhuang, and J. Chen, “Cs 455 nm nonlinear spectroscopy with ultra-narrow linewidth,” Chin. Phys. Lett. 30, 060601 (2013). 51. V. A. Reshetov, “ Polarization properties of superradiance from levels with hyperfine structure,” J. Phys. B 28, p. 1899-1904. (2014). 52. M. O. Scully, and M. S. Zubairy, Quantum Optics, (Cambridge University Press, New York, NY, 1997).
منابع مشابه
Initial atomic coherences and Ramsey frequency pulling in fountain clocks
In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to...
متن کاملSuperradiance on the millihertz linewidth strontium clock transition
Laser frequency noise contributes a significant limitation to today's best atomic clocks. A proposed solution to this problem is to create a superradiant laser using an optical clock transition as its gain medium. This laser would act as an active atomic clock and would be highly immune to the fluctuations in reference cavity length that limit today's best lasers. We demonstrate and characteriz...
متن کاملThe Status of Cesium Beam Frequency Standards
There har been a lot ofprogress in cesium beam frequenq standards in the k t few years some of which will be reported here. Optical pumping is being pursued actively in u number of lahorufories. Optically slowed and cooled beums have been demonstrated as well as traps for cold neutral atoms. The microwuve cavity performance with regurd to hculphuse shgt at the beam hoks has been improved by use...
متن کاملComposite Cavity Fiber Laser with Asymmetric Output Intensity and Wavelength
The composite cavity fiber laser (CCFL) is relatively simple in its fabrication, as it is essentially three wavelength matched Bragg gratings in a section of doped fiber. By using internal feedback with unequal sub-cavity lengths, unidirectional CCFLs with significantly asymmetric output power from its two outputs can be achieved. Preliminary results also show that it is possible for the lasing...
متن کاملLasing in robust cesium lead halide perovskite nanowires.
The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic-inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014