Temporal evolution of resonant absorption in coronal loops Excitation by footpoint motions normal to the magnetic surfaces
نویسندگان
چکیده
In this paper we study the temporal evolution of linear MHD waves excited by footpoint motions using an ideal, pressureless slab model for coronal loops. We choose the footpoint motions to be polarised normal to the magnetic flux surfaces such that only fast waves are driven directly, including the so-called quasi-modes. We have derived a formal analytical solution as a superposition of eigenmodes describing the system as a function of time. The corresponding eigenvalue problem is solved numerically. This enables us to study the influence of the characteristics of the footpoint motion on the excitation of the quasi-modes. On the magnetic flux surface where the frequency of these quasi-modes equals the local Alfvén frequency, wave energy is transferred from thequasi-modes towardsAlfvén waves.We investigate the time evolution of this process inwhich small scale dissipative features are generated which can be relevant in the context of coronal heating. Special attention is given to the question whether this generation of small scale dissipative features takes place on time scales shorter than typical life times of coronal loops. Expressing the dissipation time scale as function of the length scale corresponding to the resonances, an estimate for the time when dissipation becomes important and when our ideal MHD simulation stops to be valid, can be derived. For typical dissipation coefficients and length scales, dissipation becomes important in the resonance layer in a time comparable to the life time of coronal loops.
منابع مشابه
Randomly driven fast waves in coronal loops II. with coupling to Alfvén waves
We study the time evolution of fast magnetosonic and Alfvén waves in a coronal loop driven by random footpoint motions. The footpoint motions are assumed to be polarized normal to the magnetic flux surfaces in linear ideal MHD. De Groof et al. (1998) (Paper I) showed that the input energy is mainly stored in the body modes when the fast waves are decoupled from the Alfvén waves. Hence driving a...
متن کاملRandom driven fast waves in coronal loops I. Without coupling to Alfvén waves
In this paper we study the time evolution of fast MHD waves in a coronal loop driven by footpoint motions in linear ideal MHD. We restrict the analysis to footpoint motions polarized normal to the magnetic flux surfaces such that the fast waves are driven directly. By supposing the azimuthal wave number ky to be zero, the fast waves are decoupled from the Alfvén waves. As a first step to real s...
متن کاملDirect excitation of resonant torsional Alfvén waves by footpoint motions
The present paper studies the heating of coronal loops by linear resonant Alfvén waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only torsional Alfvénwaves are excited. For this subclass of footpointmotions, the Alfvén and cusp singularit...
متن کاملResonant Alfvén waves in coronal arcades driven by footpoint motions
X-ray spectroscopy performed from different astronomical spacecrafts has shown that the solar corona is structured by magnetic fields having the shape of loops and arcades. These structures are formed by stretching and reconnection of magnetic fields, and remain stable from days to weeks. Also, sporadic or periodic brightenings of such structures have been detected in UV and soft X-ray observat...
متن کاملWave heating of coronal arcades driven by toroidally polarised footpoint motions Stationary behaviour in dissipative MHD
Westudy the heating of 2-D coronal arcades by linear resonant Alfvén waves that are excited by photospheric footpoint motions of the magnetic field lines. The analysis is restricted to toroidally polarised footpoint motions so that Alfvén waves are excited directly. At the magnetic surfaces where Alfvén waves, travelling back and forth along the loop-like magnetic field lines, are in phase with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996