Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
نویسندگان
چکیده
This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu.
منابع مشابه
Prediction of structural features and application to outer membrane protein identification
Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the ass...
متن کاملPredicting the errors of predicted local backbone angles and non-local solvent- accessibilities of proteins by deep neural networks
MOTIVATION Backbone structures and solvent accessible surface area of proteins are benefited from continuous real value prediction because it removes the arbitrariness of defining boundary between different secondary-structure and solvent-accessibility states. However, lacking the confidence score for predicted values has limited their applications. Here we investigated whether or not we can ma...
متن کاملPredicting residue-residue contact maps by a two-layer, integrated neural-network method.
A neural network method (SPINE-2D) is introduced to provide a sequence-based prediction of residue-residue contact maps. This method is built on the success of SPINE in predicting secondary structure, residue solvent accessibility, and backbone torsion angles via large-scale training with overfit protection and a two-layer neural network. SPINE-2D achieved a 10-fold cross-validated accuracy of ...
متن کاملImproving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
Direct prediction of protein structure from sequence is a challenging problem. An effective approach is to break it up into independent sub-problems. These sub-problems such as prediction of protein secondary structure can then be solved independently. In a previous study, we found that an iterative use of predicted secondary structure and backbone torsion angles can further improve secondary s...
متن کاملSPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
Accurate prediction of protein secondary structure is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. The accuracy of ab initio secondary structure prediction from sequence, however, has only increased from around 77 to 80% over the past decade. Here, we developed a multistep neural-network algorithm by coupling secondary structure predi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proteins
دوره 74 4 شماره
صفحات -
تاریخ انتشار 2009