Local limiting behavior of the zeros of approximating polynomials
نویسنده
چکیده
Let f be a piecewise analytic (but not analytic) function in @[a, b], k > 0, and let p,* be the sequence of polynomials of best uniform approximation to f on [a, b]. It is well known that every point of [a, b] is a limit point of the zeros of the p,*. Let x E [a, b], and suppose that f is analytic at x and f(x) # 0. The main purpose of this paper is to show that there exists a constant y (which depends only on x) such that there is no zero of p,* within the circle of radius (y/n) log n centered at X, for all sufficiently large values of n.
منابع مشابه
Some compact generalization of inequalities for polynomials with prescribed zeros
Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$. In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$, $k^2 leq rRleq R^2$ and for $Rleq r leq k$. Our results refine and generalize certain well-known polynomial inequalities.
متن کاملOn the Zero Attractor of the Euler Polynomials
We study the limiting behavior of the zeros of the Euler polynomials. When linearly scaled, they approach a definite curve in the complex plane related to the Szegö curve which governs the behavior of the roots of the Taylor polynomials associated to the exponential function. Further, under a conformal transformation, the scaled zeros are uniformly distributed.
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملPolynomials associated with Partitions: Their Asymptotics and Zeros
Let pn be the number of partitions of an integer n. For each of the partition statistics of counting their parts, ranks, or cranks, there is a natural family of integer polynomials. We investigate their asymptotics and the limiting behavior of their zeros as sets and densities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001