Escaping orbits in trace maps
نویسنده
چکیده
We study the finitely-generated group A of invertible polynomial mappings from @ to itself (or Iw3 to itself) which preserve the Fricke-Vogt invariant 1(x, y, z) = x2 + y* + z* 2xyz 1. Using properties of suitably-chosen generators, we give a necessary condition and sufficient conditions for infinite order elements of A to have an unbounded orbit escaping to infinity in forward or backward time. Our main motivation for this study is that A includes the so-called trace maps derived from transfer matrix approaches to various physical processes displaying non-periodicity in space or time. As shown previously, characterising escaping orbits leads to various conclusions for the physical model and vice versa (e.g. electronic properties of 1D quasicrystals). Our results generalize in a simple constructive way those previously proved for Fibonacci-type trace maps. Dedicated to Hans W Cape1 on the occasion of his 60th birthday.
منابع مشابه
Multiple Gravity Assists, Capture, and Escape in the Restricted Three-Body Problem
For low energy spacecraft trajectories such as multimoon orbiters for the Jupiter system, multiple gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease fuel usage. In this paper, we investigate a special class of multiple gravity assists which can occur outside of the perturbing body’s sphere of influence (the Hill sphere) and which is dynamically...
متن کاملAas 07-227 Multiple Gravity Assists in the Restricted Three-body Problem∗
For low energy spacecraft trajectories such as multi-moon orbiters for the Jupiter system, multiple gravity assists by moons could be used in conjunction with ballistic capture to drastically decrease fuel usage. In this paper, we investigate a special class of multiple gravity assists which can occur outside of the perturbing body’s sphere of influence (the Hill sphere) and which is dynamicall...
متن کاملCharacteristics of a piecewise smooth area-preserving map.
We are reporting a study carried out in a system concatenated by two area-preserving maps. The system can be viewed as a model of an electronic relaxation oscillator with over-voltage protection. We found that a border-collision bifurcation may interrupt a period-doubling bifurcation cascade, and that some special features, such as "quasicoexisting periodic orbits crossing border" as well as th...
متن کاملTrace formula for activated escape in noisy maps
Using path-integral methods, a formula is deduced for the noise-induced escape rate from an attracting fixed point across an unstable fixed point in one-dimensional maps. The calculation starts from the trace formula for the eigenvalues of the Frobenius-Perron operator ruling the time evolution of the probability density in noisy maps. The escape rate is determined from the loop formed by two h...
متن کاملTopological Dynamics of Exponential Maps on Their Escaping Sets
For the family of exponential maps Eκ(z) = exp(z)+κ, we prove an analog of Böttcher’s theorem by showing that any two exponential maps Eκ1 and Eκ2 are conjugate on suitable subsets of their escaping sets, and this conjugacy is quasiconformal. Furthermore, we prove that any two attracting and parabolic exponential maps are conjugate on their sets of escaping points; in fact, we construct an anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001