Differential positivity characterizes one-dimensional normally hyperbolic attractors
نویسندگان
چکیده
The paper shows that normally hyperbolic one-dimensional compact attractors of smooth dynamical systems are characterized by differential positivity, that is, the pointwise infinitesimal contraction of a smooth cone field. The result is analog to the characterization of zero-dimensional hyperbolic attractors by differential stability, which is the pointwise infinitesimal contraction of a Riemannian metric.
منابع مشابه
Orbit Equivalence of Global Attractors of Semilinear Parabolic Differential Equations
We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x, u, ux) on the unit interval 0 ≤ x ≤ 1 with Neumann boundary conditions. A permutation πf is defined by the two orderings of the set of (hyperbolic) equilibrium solutions ut ≡ 0 according to their respective values at the two boundary points x = 0 and x = 1. We prove that two global attractors, Af and Ag, are glo...
متن کاملThe explosion of singular hyperbolic attractors
A singular hyperbolic attractor for flows is a partially hyperbolic at-tractor with singularities (hyperbolic ones) and volume expanding central direction [MPP1]. The geometric Lorenz attractor [GW] is an example of a singular hyperbolic attractor. In this paper we study the perturbations of singular hyperbolic attractors for three-dimensional flows. It is proved that any attractor obtained fro...
متن کاملOn the Volume of Singular-hyperbolic Sets
An attractor Λ for a 3-vector field X is singular-hyperbolic if all its singularities are hyperbolic and it is partially hyperbolic with volume expanding central direction. We prove that C singularhyperbolic attractors, for some α > 0, always have zero volume, thus extending an analogous result for uniformly hyperbolic attractors. The same result holds for a class of higher dimensional singular...
متن کاملInvariant manifolds near hyperbolic fixed points
In these notes we discuss obstructions to the existence of local invariant manifolds in some smoothness class, near hyperbolic fixed points of diffeomorphisms. We present an elementary construction for continuously differentiable invariant manifolds, that are not necessarily normally hyperbolic, near attracting fixed points. The analogous theory for invariant manifolds near hyperbolic equilbria...
متن کاملUpper Semicontinuity of Attractors for Approximations of Semigroups and Partial Differential Equations
Suppose a given evolutionary equation has a compact attractor and the evolutionary equation is approximated by a finite-dimensional system. Conditions are given to ensure the approximate system has a compact attractor which converges to the original one as the approximation is refined. Applications are given to parabolic and hyperbolic partial differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.06996 شماره
صفحات -
تاریخ انتشار 2015