Parallel multi-dimensional range query processing with R-trees on GPU

نویسندگان

  • Jinwoong Kim
  • Sul-Gi Kim
  • Beomseok Nam
چکیده

The general purpose computing on graphics processing unit (GP-GPU) has emerged as a new cost effective parallel computing paradigm in high performance computing research that enables large amount of data to be processed in parallel. Large scale scientific data intensive applications have been playing an important role in modern high performance computing research. A common access pattern into such scientific data analysis applications is multi-dimensional range query, but not much research has been conducted on multidimensional range query on GP-GPU. Inherently multi-dimensional indexing trees such as R-Trees are not well suited for GPU environment because of its irregular tree traversal. Traversing irregular tree search path makes it hard to maximize the utilization of massively parallel architectures. In this paper, we propose a novel MPTS (Massively Parallel Three-phase Scanning) R-tree traversal algorithm for multi-dimensional range query, that converts recursive access to tree nodes into sequential access. Our extensive experimental study shows that MPTS R-tree traversal algorithm on NVIDIA Tesla M2090 GPU consistently outperforms traditional recursive R-trees search algorithm on Intel Xeon E5506

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-based Batched Spatial Query Processing on R-Trees

R-trees are popular spatial indexing techniques that have been widely used in many geospatial applications. The increasingly available Graphics Processing Units (GPUs) resources for general computing have attracted considerable research interests in applying the massive data parallel technologies to index and query geospatial data based on R-trees. In this paper, we investigate on the potential...

متن کامل

GPU-based Spatial Indexing and Query Processing Using R-Trees

R-trees are popular spatial indexing techniques that have been widely used in many geospatial applications. The increasingly available Graphics Processing Units (GPUs) for general computing have attracted considerable research interests in applying the massive data parallel technologies to index and query geospatial data based on R-trees. In this paper, we investigate on the potential of accele...

متن کامل

Parallel indexing technique for spatio-temporal data

The requirements for efficient access and management of massive multi-dimensional spatio-temporal data in geographical information system and its applications are well recognized and researched. The most popular spatio-temporal access method is the R-Tree and its variants. However, it is difficult to use them for parallel access to multi-dimensional spatio-temporal data because R-Trees, and var...

متن کامل

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Technical Report: Parallel Distance Threshold Query Processing for Spatiotemporal Trajectory Databases on the GPU

Processing moving object trajectories arises in many application domains and has been addressed by practitioners in the spatiotemporal database and Geographical Information System communities. In this work, we focus on a trajectory similarity search, the distance threshold query, which finds all trajectories within a given distance d of a search trajectory over a time interval. We demonstrate t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2013