Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid.

نویسندگان

  • Fei Liu
  • Veronika Kozlovskaya
  • Oleksandra Zavgorodnya
  • Claudia Martinez-Lopez
  • Shane Catledge
  • Eugenia Kharlampieva
چکیده

Tannic acid (TA)-based multilayer assemblies have attracted increasing interest for biomedical applications. Here we explore properties of TA-poly(N-vinylpyrrolidone) (TA-PVPON) hydrogen-bonded multilayers for drug encapsulation and long-term storage. We demonstrate that the small molecular weight anticancer drug, doxorubicin (DOX), can be successfully loaded into (TA-PVPON) capsules with high encapsulation efficiency. We have also found that the encapsulated DOX can be efficiently stored inside the capsules for the pH range from pH = 7.4 to pH = 5. We show that the chemical and functional stability of TA at neutral and basic pH values is achieved through complexation with PVPON. The UV-vis spectrophotometry and in situ ellipsometry analyses of the hydrogen bonding interactions between TA and PVPON at different pH values reveal pH-dependent behavior of TA-PVPON capsules for the pH range from pH = 7.4 to pH = 5. Increasing deposition pH value from pH = 5 to pH = 7.4 leads to a 2-fold decrease in capsule thickness. However, this trend is reversed when salt concentration of the deposition solutions is increased from 0.01 M to 0.1 M NaCl. We have also demonstrated that the permeability of (TA-PVPON) capsules prepared using low salt deposition conditions and pH = 7.4 can be increased 2-fold by exposure of the capsules to 0.1 M NaCl salt solutions at the same pH. Our work opens new perspectives for design of novel polymer carriers for controlled drug delivery in cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Encapsulation of Peppermint Oil with Arabic Gum-gelatin by Complex Coacervation Method

The gelatin/gum Arabic microcapsules encapsulating peppermint oil were prepared by complex coacervation using tannic acid as hardening agent. The effects of various parameters, including concentration of wall material, core material, tannic acid and tween80 were investigated on particle size and encapsulation efficiency. For statistical evaluation of the parameters, Taguchi method has been used...

متن کامل

Hydrogen bonded polymeric multilayer films assembled below and above the cloud point temperature.

Polymeric multilayer films assembled via hydrogen-bonding are witnessing increased interest from the scientific community. Here we report on hydrogen bonded multilayers of tannic acid and neutral poly(2-oxazoline)s. Importantly we demonstrate, to the best of our knowledge, for the first time that a temperature responsive polymer, in this case poly(2-(n-propyl)-2-oxazline), can be assembled belo...

متن کامل

Direct probing of micromechanical properties of hydrogen-bonded layer-by-layer microcapsule shells with different chemical compositions.

The mechanical properties of hydrogen-bonded layer-by-layer (LbL) microcapsule shells constructed from tannic acid (TA) and poly(vinylpyrrolidone) (PVPON) components have been studied in both the dry and swollen states. In the dry state, the value of the elastic modulus was measured to be within 0.6-0.7 GPa, which is lower than the typical elastic modulus for electrostatically assembled LbL she...

متن کامل

Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies

We explore responsive properties of hollow multilayer shells of tannic acid assembled with a range of neutral polymers, poly(N-vinylpyrrolidone) (PVPON), poly(N-vinylcaprolactam) (PVCL) or poly(N-isopropylacrylamide) (PNIPAM). We found that properties of the nanoscale shells fabricated through hydrogen-bonded layer-by-layer (LbL) assembly can be tuned changing the interaction strength of a neut...

متن کامل

THEORETICAL STUDIES OF CHANGES IN PROPERTIES OF 5-FLUORO-2-DEOXYURIDINE (FUDR) ANTICANCER DRUG BY ADSORPTION ON BORON NITRIDE NANOTUBE (5, 5-11)

Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft matter

دوره 10 46  شماره 

صفحات  -

تاریخ انتشار 2014