Learning Singly-Recursive Relations from Small Datasets
نویسندگان
چکیده
The inductive logic programming system LOPSTER was created to demonstrate the advantage of basing induction on logical implication rather than -subsumption. LOPSTER's sub-uni cation procedures allow it to induce recursive relations using a minimum number of examples, whereas inductive logic programming algorithms based on -subsumption require many more examples to solve induction tasks. However, LOPSTER's input examples must be carefully chosen; they must be along the same inverse resolution path. We hypothesize that an extension of LOPSTER can e ciently induce recursive relations without this requirement. We introduce a generalization of LOPSTER named CRUSTACEAN that has this capability and empirically evaluate its ability to induce recursive relations.
منابع مشابه
A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملLearning Ancestral Polytrees
Causal polytrees are singly connected causal models and they are frequently applied in practice. However, in various applications, many variables remain unobserved and causal polytrees cannot be applied without explicitly including unobserved variables. Our study thus proposes the ancestral polytree model, a novel combination of ancestral graphs and singly connected graphs. Ancestral graphs can...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملCharacter-Based Text Classification using Top Down Semantic Model for Sentence Representation
Despite the success of deep learning on many fronts especially image and speech, its application in text classification often is still not as good as a simple linear SVM on n-gram TF-IDF representation especially for smaller datasets. Deep learning tends to emphasize on sentence level semantics when learning a representation with models like recurrent neural network or recursive neural network,...
متن کاملMeta-Interpretive Learning of Data Transformation Programs
Data transformation involves the manual construction of large numbers of special-purpose programs. Although typically small, such programs can be complex, involving problem decomposition, recursion, and recognition of context. Building such programs is common in commercial and academic data analytic projects and can be labour intensive and expensive, making it a suitable candidate for machine l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993