Discovering latent causes in reinforcement learning

نویسندگان

  • Samuel J Gershman
  • Kenneth A Norman
  • Yael Niv
چکیده

Effective reinforcement learning hinges on having an appropriate state representation. But where does this representation come from? We argue that the brain discovers state representations by trying to infer the latent causal structure of the task at hand, and assigning each latent cause to a separate state. In this paper, we review several implications of this latent cause framework, with a focus on Pavlovian conditioning. The framework suggests that conditioning is not the acquisition of associations between cues and outcomes, but rather the acquisition of associations between latent causes and observable stimuli. A latent cause interpretation of conditioning enables us to begin answering questions that have frustrated classical theories: Why do extinguished responses sometimes return? Why do stimuli presented in compound sometimes summate and sometimes do not? Beyond conditioning, the principles of latent causal inference may provide a general theory of structure learning across cognitive domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex.

UNLABELLED The orbitofrontal cortex (OFC) has been implicated in both the representation of "state," in studies of reinforcement learning and decision making, and also in the representation of "schemas," in studies of episodic memory. Both of these cognitive constructs require a similar inference about the underlying situation or "latent cause" that generates our observations at any given time....

متن کامل

Discovering Hierarchy in Reinforcement Learning with HEXQ

An open problem in reinforcement learning is discovering hierarchical structure. HEXQ, an algorithm which automatically attempts to decompose and solve a model-free factored MDP hierarchically is described. By searching for aliased Markov sub-space regions based on the state variables the algorithm uses temporal and state abstraction to construct a hierarchy of interlinked smaller MDPs.

متن کامل

The Effect of Electronical Media on the Reinforcement of Social Behavior of Youth from the Computer Course Professors and Students Viewpoints of Sari Islamic Azad University

The goal of research was the effect of electronical learning media on the reinforcement of youth social behavior from the point of view of computer course professors and students of Islamic Azad University of Sari. The statistical population was included of all computer students and professors of I.A.U of Sari. The statistical sample was identified by using of the sample content identification ...

متن کامل

Discovering Latent States for Model Learning: Applying Sensorimotor Contingencies Theory and Predictive Processing to Model Context

Autonomous robots need to be able to adapt to unforeseen situations and to acquire new skills through trial and error. Reinforcement learning in principle offers a suitable methodological framework for this kind of autonomous learning. However current computational reinforcement learning agents mostly learn each individual skill entirely from scratch. How can we enable artificial agents, such a...

متن کامل

Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes

In sequential decision making, it is often important and useful for end users to understand the underlying patterns or causes that lead to the corresponding decisions. However, typical deep reinforcement learning algorithms seldom provide such information due to their black-box nature. In this paper, we present a probabilistic model, Q-LDA, to uncover latent patterns in text-based sequential de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015