Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana.

نویسندگان

  • Rosa Lozano-Durán
  • Tabata Rosas-Díaz
  • Giuliana Gusmaroli
  • Ana P Luna
  • Ludivine Taconnat
  • Xing Wang Deng
  • Eduardo R Bejarano
چکیده

Viruses must create a suitable cell environment and elude defense mechanisms, which likely involves interactions with host proteins and subsequent interference with or usurpation of cellular machinery. Here, we describe a novel strategy used by plant DNA viruses (Geminiviruses) to redirect ubiquitination by interfering with the activity of the CSN (COP9 signalosome) complex. We show that geminiviral C2 protein interacts with CSN5, and its expression in transgenic plants compromises CSN activity on CUL1. Several responses regulated by the CUL1-based SCF ubiquitin E3 ligases (including responses to jasmonates, auxins, gibberellins, ethylene, and abscisic acid) are altered in these plants. Impairment of SCF function is confirmed by stabilization of yellow fluorescent protein-GAI, a substrate of the SCF(SLY1). Transcriptomic analysis of these transgenic plants highlights the response to jasmonates as the main SCF-dependent process affected by C2. Exogenous jasmonate treatment of Arabidopsis thaliana plants disrupts geminivirus infection, suggesting that the suppression of the jasmonate response might be crucial for infection. Our findings suggest that C2 affects the activity of SCFs, most likely through interference with the CSN. As SCFs are key regulators of many cellular processes, the capability of viruses to selectively interfere with or hijack the activity of these complexes might define a novel and powerful strategy in viral infections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development.

The COP9 signalosome (CSN) is an evolutionarily conserved multisubunit protein complex involved in a variety of signaling and developmental processes through the regulation of protein ubiquitination and degradation. A known biochemical role attributed to CSN is a metalloprotease activity responsible for the derubylation of cullins, core components for several types of ubiquitin E3 ligases. The ...

متن کامل

Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis.

Ubiquitin E3 ligases are a diverse family of protein complexes that mediate the ubiquitination and subsequent proteolytic turnover of proteins in a highly specific manner. Among the several classes of ubiquitin E3 ligases, the Skp1-Cullin-F-box (SCF) class is generally comprised of three 'core' subunits: Skp1 and Cullin, plus at least one F-box protein (FBP) subunit that imparts specificity for...

متن کامل

COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis.

Jasmonates (JAs) regulate Arabidopsis thaliana wound and defence responses, pollen development, and stress-related growth inhibition. Significantly, each of these responses requires COI1, an F-box protein. Other F-box proteins interact with SKP1 and cullin proteins to form SCF complexes that selectively recruit regulatory proteins targeted for ubiquitination. To determine whether COI1 also func...

متن کامل

Multiple ubiquitin ligase-mediated processes require COP9 signalosome and AXR1 function.

The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex that mediates the repression of photomorphogenesis in the dark in Arabidopsis through the degradation of transcription factors such as HY5 and HYH. CSN-mediated HY5 and HYH degradation also requires the activity of the putative E3 ubiquitin ligase (E3) component COP1 and the E2-conjugating enzyme variant COP10. Recen...

متن کامل

Evidence for a physical association of the COP9 signalosome, the proteasome, and specific SCF E3 ligases in vivo

The COP9 signalosome (CSN) was initially discovered during the genetic analysis of light control of Arabidopsis seedling development and later shown to be a protein complex that is conserved among diverged organisms [1]. The accumulation of ubiquitin conjugated proteins and the failure to degrade specific proteins, such as HY5 and IAA6, in csn mutants [2–4] supports a role for CSN in the ubiqui...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2011