Cerebral blood flow, blood volume, and oxygen metabolism dynamics in human visual and motor cortex as measured by whole-brain multi-modal magnetic resonance imaging.

نویسندگان

  • Manus J Donahue
  • Jakob U Blicher
  • Leif Østergaard
  • David A Feinberg
  • Bradley J MacIntosh
  • Karla L Miller
  • Matthias Günther
  • Peter Jezzard
چکیده

The development of neuroimaging methods to characterize flow-metabolism coupling is crucial for understanding mechanisms that subserve oxygen delivery. Functional magnetic resonance imaging (fMRI) using blood-oxygenation-level-dependent (BOLD) contrast reflects composite changes in cerebral blood volume (CBV), cerebral blood flow (CBF), and the cerebral metabolic rate of oxygen consumption (CMRO(2)). However, it is difficult to separate these parameters from the composite BOLD signal, thereby hampering MR-based flow-metabolism coupling studies. Here, a novel, noninvasive CBV-weighted MRI approach (VASO-FLAIR with 3D GRASE (GRadient-And-Spin-Echo)) is used in conjunction with CBF-weighted and BOLD fMRI in healthy volunteers (n=7) performing simultaneous visual (8 Hz flashing-checkerboard) and motor (1 Hz unilateral joystick) tasks. This approach allows for CBV, CBF, and CMRO(2) to be estimated, yielding (mean+/-s.d.): DeltaCBF=63%+/-12%, DeltaCBV=17%+/-7%, and DeltaCMRO(2)=13%+/-11% in the visual cortex, and DeltaCBF=46%+/-11%, DeltaCBV=8%+/-3%, and DeltaCMRO(2)=12%+/-13% in the motor cortex. Following the visual and motor tasks, the BOLD signal became more negative (P=0.003) and persisted longer (P=0.006) in the visual cortex compared with the motor cortex, whereas CBV and CBF returned to baseline earlier and equivalently. The proposed whole-brain technique should be useful for assessing regional discrepancies in hemodynamic reactivity without the use of intravascular contrast agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative functional imaging of the brain: towards mapping neuronal activity by BOLD fMRI.

Quantitative magnetic resonance imaging (MRI) and spectroscopy (MRS) measurements of energy metabolism (i.e. cerebral metabolic rate of oxygen consumption, CMR(O2)), blood circulation (i.e. cerebral blood flow, CBF, and volume, CBV), and functional MRI (fMRI) signal over a wide range of neuronal activity and pharmacological treatments are used to interpret the neurophysiologic basis of blood ox...

متن کامل

Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in...

متن کامل

Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients.

The blood-oxygen-level-dependent (BOLD) signal measured in the brain with functional magnetic resonance imaging (fMRI) during an activation experiment often exhibits pronounced transients at the beginning and end of the stimulus. Such transients could be a reflection of transients in the underlying neural activity, or they could result from transients in cerebral blood flow (CBF), cerebral meta...

متن کامل

Estimating cerebral oxygen metabolism from fMRI with a dynamic multicompartment Windkessel model.

Stimulus evoked changes in cerebral blood flow, volume, and oxygenation arise from responses to underlying neuronally mediated changes in vascular tone and cerebral oxygen metabolism. There is increasing evidence that the magnitude and temporal characteristics of these evoked hemodynamic changes are additionally influenced by the local properties of the vasculature including the levels of basel...

متن کامل

Sexual Dimorphism in Volume of the Cerebral Hemispheres and Lateral Ventricles in Schizophrenia Using Magnetic Resonance Imaging

Purpose: This study is designed to determine the sexual dimorphism pattern in volume of the cerebral hemispheres and lateral ventricles in schizophrenia using magnetic resonance imaging (MRI) and to compare it with normal sexual dimorphism pattern in healthy brains. Materials and Methods: This study is performed on 29 healthy volunteers (21 males, 8 females) and 29 patients suffered from schiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 29 11  شماره 

صفحات  -

تاریخ انتشار 2009