Low-Rank and Low-Order Decompositions for Local System Identification

نویسندگان

  • Nikolai Matni
  • Anders Rantzer
چکیده

As distributed systems increase in size, the need for scalable algorithms becomes more and more important. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. We show that in what we term the “full interconnection measurement” setting, this task is easily solved using existing system identification methods. We also propose a promising heuristic for the “hidden interconnection measurement” case, in which contributions to local measurements from both local and global dynamics need to be separated. Inspired by the machine learning literature, and in particular by convex approaches to rank minimization and matrix decomposition, we exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization

In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new te...

متن کامل

System Identification in the Behavioral Setting - A Structured Low-Rank Approximation Approach

System identification is a fast growing research area that encompasses a broad range of problems and solution methods. It is desirable to have a unifying setting and a few common principles that are sufficient to understand the currently existing identification methods. The behavioral approach to system and control, put forward in the mid 80’s, is such a unifying setting. Till recently, however...

متن کامل

Generalized Reduced-Rank Decompositions Using Switching and Adaptive Algorithms for Space-Time Adaptive Processing

This work presents generalized low-rank signal decompositions with the aid of switching techniques and adaptive algorithms, which do not require eigen-decompositions, for space-time adaptive processing. A generalized scheme is proposed to compute low-rank signal decompositions by imposing suitable constraints on the filtering and by performing iterations between the computed subspace and the lo...

متن کامل

Learning Mixtures of Discrete Product Distributions using Spectral Decompositions

We study the problem of learning a distribution from samples, when the underlying distribution is a mixture of product distributions over discrete domains. This problem is motivated by several practical applications such as crowdsourcing, recommendation systems, and learning Boolean functions. The existing solutions either heavily rely on the fact that the number of mixtures is finite or have s...

متن کامل

The geometry of rank decompositions of matrix multiplication I: 2x2 matrices

This is the first in a series of papers on rank decompositions of the matrix multiplication tensor. In this paper we: establish general facts about rank decompositions of tensors, describe potential ways to search for new matrix multiplication decompositions, give a geometric proof of the theorem of [3] establishing the symmetry group of Strassen’s algorithm, and present two particularly nice s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1403.7175  شماره 

صفحات  -

تاریخ انتشار 2014