Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis.

نویسندگان

  • David Erickson
  • Xuezhu Liu
  • Ulrich Krull
  • Dongqing Li
چکیده

Biosensors and more specifically biochips exploit the interactions between a target analyte and an immobilized biological recognition element to produce a measurable signal. Systems based on surface nucleic acid hybridization, such as microarrays, are particularly attractive due to the high degree of selectivity in the binding interactions. One of the drawbacks of this reaction is the relatively long time required for complete hybridization to occur, which is often the result of diffusion-limited reaction kinetics. In this work, an electrokinetically controlled DNA hybridization microfluidic chip will be introduced. The electrokinetic delivery technique provides the ability to dispense controlled samples of nanoliter volumes directly to the hybridization array (thereby increasing the reaction rate) and rapidly remove nonspecific adsorption, enabling the hybridization, washing, and scanning procedures to be conducted simultaneously. The result is that all processes from sample dispensing to hybridization detection can be completed in as little as 5 min. The chip also demonstrates an efficient hybridization scheme in which the probe saturation level is reached very rapidly as the targets are transported over the immobilized probe site enabling quantitative analysis of the sample concentration. Detection levels as low as 50 pM have been recorded using an epifluorescence microscope.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis.

Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled...

متن کامل

Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells.

Here we present a novel microfluidic technique for on-chip surface enhanced Raman spectroscopy (SERS) based biomolecular detection, exploiting the use of electrokinetically active microwells. Briefly, the chip comprises of a series of microfluidic channels containing embedded microwells that, when electrically actuated, either locally attract or repulse species from solution through a combinati...

متن کامل

Rapid DNA hybridization analysis using a PDMS microfluidic sensor and a molecular beacon.

A rapid DNA analysis has been developed based on a fluorescence intensity change of a molecular beacon in a PDMS microfluidic channel. Recently, we reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). However, there are some limitations in its application to real DNA samples because the target DNA must be labelled ...

متن کامل

Rapid on-chip genetic detection microfluidic platform for real world applications.

The development of genetic detection protocols for field applications is an important aspect of modern medical diagnostic technology and environmental monitoring. In this paper, we report a rapid, portable, and inexpensive DNA hybridization technique using a bead-based microfluidic platform that functions by passing fluorescently labeled target DNA through a chamber packed with functionalized b...

متن کامل

A microfluidic-based electrochemical biochip for label-free DNA hybridization analysis.

Miniaturization of analytical benchtop procedures into the micro-scale provides significant advantages in regards to reaction time, cost, and integration of pre-processing steps. Utilizing these devices towards the analysis of DNA hybridization events is important because it offers a technology for real time assessment of biomarkers at the point-of-care for various diseases. However, when the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 76 24  شماره 

صفحات  -

تاریخ انتشار 2004