SVM Optimization for Hyperspectral Colon Tissue Cell Classification

نویسندگان

  • Kashif Rajpoot
  • Nasir M. Rajpoot
چکیده

The classification of normal and malginant colon tissue cells is crucial to the diagnosis of colon cancer in humans. Given the right set of feature vectors, Support Vector Machines (SVMs) have been shown to perform reasonably well for the classification [4, 13]. In this paper, we address the following question: how does the choice of a kernel function and its parameters affect the SVM classification performance in such a system? We show that the Gaussian kernel function combined with an optimal choice of parameters can produce high classification accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Texture Analysis for Colon Tissue Biopsy Classification

Diagnosis and cure of colon cancer can be improved by performing automated histopathological analysis of colon biopsy samples. Due to significant observational variation between pathologists in several histological features, there is a need for the development of automated, quantitative analysis techniques. This paper presents a promising automative technique for the classification of hyperspec...

متن کامل

Hyperspectral Colon Tissue Cell Classification

A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processin...

متن کامل

Spectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification

Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. First, we propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have opt...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

High performance of the support vector machine in classifying hyperspectral data using a limited dataset

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004