COSHH: A classification and optimization based scheduler for heterogeneous Hadoop systems
نویسندگان
چکیده
A Hadoop system provides execution and multiplexing of many tasks in a common datacenter. There is a rising demand for sharing Hadoop clusters amongst various users, which leads to increasing system heterogeneity. However, heterogeneity is a neglected issue in most Hadoop schedulers. In this work we design and implement a new Hadoop scheduling system, named COSHH, which considers heterogeneity at both the application and cluster levels. The main objective of COSHH is to improve the mean completion time of jobs. However, as it is concerned with other key Hadoop performance metrics, our proposed scheduler also achieves competitive performance under minimum share satisfaction, fairness and locality metrics with respect to other well-known Hadoop schedulers.
منابع مشابه
Adaptive Dynamic Data Placement Algorithm for Hadoop in Heterogeneous Environments
Hadoop MapReduce framework is an important distributed processing model for large-scale data intensive applications. The current Hadoop and the existing Hadoop distributed file system’s rack-aware data placement strategy in MapReduce in the homogeneous Hadoop cluster assume that each node in a cluster has the same computing capacity and a same workload is assigned to each node. Default Hadoop d...
متن کاملHadoop Map Reduce Job Scheduler Implementation and Analysis in Heterogeneous Environment
Hadoop MapReduce is one of the popular framework for BigData analytics. MapReduce cluster is shared among multiple users with heterogeneous workloads. When jobs are concurrently submitted to the cluster, resources are shared among them so system performance might be degrades. The issue here is that schedule the tasks and provide the fairness of resources to all jobs. Hadoop supports different s...
متن کاملHeterogeneous Multi core processors for improving the efficiency of Market basket analysis algorithm in data mining
-Heterogeneous multi core processors can offer diverse computing capabilities. The efficiency of Market Basket Analysis Algorithm can be improved with heterogeneous multi core processors. Market basket analysis algorithm utilises apriori algorithm and is one of the popular data mining algorithms which can utilise Map/Reduce framework to perform analysis. The algorithm generates association rule...
متن کاملAn Optimal Task Assignment Policy and Performance Diagnosis Strategy for Heterogeneous Hadoop Cluster
The goal of the proposed research is to improve the performance of Hadoop-based software running on a heterogeneous cluster. My approach lies in the intersection of machine learning, scheduling and diagnosis. We mainly focus on heterogeneous Hadoop clusters and try to improve the performance by implementing a more efficient scheduler for this class of cluster.
متن کاملPIKACHU: How to Rebalance Load in Optimizing MapReduce On Heterogeneous Clusters
For power, cost, and pricing reasons, datacenters are evolving towards heterogeneous hardware. However, MapReduce implementations, which power a representative class of datacenter applications, were originally designed for homogeneous clusters and performed poorly on heterogeneous clusters. The natural solution, rebalancing load among the reducers running on heterogeneous nodes has been explore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Future Generation Comp. Syst.
دوره 36 شماره
صفحات -
تاریخ انتشار 2014