In-Situ Forming Biomimetic Hydrogels for Tissue Regeneration
نویسنده
چکیده
Tissue loss or organ failure caused by injury or damage is one of the most serious and costly problems in human health care. Tissue engineering, proposed by Langer et al. in the early 1990’s (Langer & Vacanti, 1993), is an emerging strategy of regenerative biomedicine that holds promise for the restoration of defect tissues and organs. The concept of tissue engineering is defined as “the application of the principles and methods of engineering and the life sciences towards the fundamental understanding of structure-function relationships in normal and pathological mammalian tissues and the development of biological substitutes that restore, maintain or improve tissue function“ (Langer & Vacanti, 1993). In order to accomplish these goals by tissue engineering, three essential components are required, that is, cells for the generation of new tissues, scaffolds for supporting the cell growth and the regeneration of new tissues, and bioactive factors capable of stimulating biological signals in vivo for cell proliferation, dfferentiation and tissue growth. Among these, the scaffolds play an important role in the success of tissue regeneration since they serve as temporary temples to mimick the excellular matrix for cell growth and interim mechanical stability for tissue regneration and integration,.
منابع مشابه
Synthesis and Characterization of an Enzyme Mediated in situ Forming Hydrogel Based on Gum Tragacanth for Biomedical Applications
Background: The excellent biocompatibility, biodegradability and biological properties of the hydrogels, fabricated using natural polymers, especially polysaccharides, are very advantageous for biomedical applications. Gum tragacanth (GT) is a heterogeneous highly branched anionic polysaccharide, which has been used extensively in food and pharmaceutical industries. Despite, its desirable prop...
متن کاملDecellularized Hydrogels in Bone Tissue Engineering: A Topical Review
Nowadays, autograft and allograft techniques represent the main solution to improve bone repair. Unfortunately, autograft technique is expensive, invasive and subject to infections and hematoma, frequently affecting both donor sites and surgical sites. A recent advance in tissue engineering is the fabrication of cell-laden hydrogels with custom-made geometry, depending on the clinical case. The...
متن کاملBiomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration
BACKGROUND Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline...
متن کاملFGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels.
Controlled scaffold degradation is a critical design criterion for the clinical success of tissue-engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study th...
متن کاملCell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells
One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012