Enhanced coupling of light into a turbid medium through microscopic interface engineering.

نویسندگان

  • Jonathan V Thompson
  • Brett H Hokr
  • Wihan Kim
  • Charles W Ballmann
  • Brian E Applegate
  • Javier Jo
  • Alexey Yamilov
  • Hui Cao
  • Marlan O Scully
  • Vladislav V Yakovlev
چکیده

There are many optical detection and sensing methods used today that provide powerful ways to diagnose, characterize, and study materials. For example, the measurement of spontaneous Raman scattering allows for remote detection and identification of chemicals. Many other optical techniques provide unique solutions to learn about biological, chemical, and even structural systems. However, when these systems exist in a highly scattering or turbid medium, the optical scattering effects reduce the effectiveness of these methods. In this article, we demonstrate a method to engineer the geometry of the optical interface of a turbid medium, thereby drastically enhancing the coupling efficiency of light into the material. This enhanced optical coupling means that light incident on the material will penetrate deeper into (and through) the medium. It also means that light thus injected into the material will have an enhanced interaction time with particles contained within the material. These results show that, by using the multiple scattering of light in a turbid medium, enhanced light-matter interaction can be achieved; this has a direct impact on spectroscopic methods such as Raman scattering and fluorescence detection in highly scattering regimes. Furthermore, the enhanced penetration depth achieved by this method will directly impact optical techniques that have previously been limited by the inability to deposit sufficient amounts of optical energy below or through highly scattering layers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Scattered light fluorescence microscopy: imaging through turbid layers.

A major limitation of any type of microscope is the penetration depth in turbid tissue. Here, we demonstrate a fundamentally novel kind of fluorescence microscope that images through optically thick turbid layers. The microscope uses scattered light, rather than light propagating along a straight path, for imaging with subwavelength resolution. Our method uses constructive interference to focus...

متن کامل

Light propagation in a turbid medium with insonified microbubbles.

Surfactant stabilized microbubbles are widely used clinical contrast agents for ultrasound imaging. In this work, the light propagation through a turbid medium in the presence of microbubbles has been investigated. Through a series of experiments, it has been found that the optical attenuation is increased when the microbubbles in a turbid medium are insonified by ultrasound. Such microbubble e...

متن کامل

Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media.

We demonstrate focusing coherent light on a nanoparticle through turbid media based on digital optical phase conjugation of second harmonic generation (SHG) field from the nanoparticle. A SHG active nanoparticle inside a turbid medium was excited at the fundamental frequency and emitted SHG field as a point source. The SHG emission was scattered by the turbid medium, and the scattered field was...

متن کامل

Raman signal enhancement via elastic light scattering.

The enhanced generation of a spontaneous Raman signal by way of elastic scattering is demonstrated. Using Monte Carlo simulations, we show that elastic scattering, by increasing the path length of light through the medium, enhances the generation of a Raman signal. This is investigated over a large parameter space, demonstrating that this effect is robust, and providing additional physical insi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 30  شماره 

صفحات  -

تاریخ انتشار 2017