Some New Local Error Estimates in Negative Norms with an Application to Local a Posteriori Error Estimation

نویسندگان

  • ALFRED H. SCHATZ
  • A. H. SCHATZ
چکیده

Here we survey some previously published results and announce some that have been newly obtained. We first review some of the results in [3] on estimates for the finite element error at a point. These estimates and analogous ones in [4] and [7] have been applied to problems in a posteriori estimates [2], [8], superconvergence [5] and others [9], [10]. We then discuss the extension of these estimates to local estimates in L∞ based negative norms. These estimates have been newly obtained and are applied to the problem of obtaining an asymptotically exact a posteriori estimator for the maximum norm of the solution error on each element.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

On Some Aspects of a Posteriori Error Estimation in the Multipoint Meshless Fdm

The higher order multipoint meshless finite difference method (MFDM) is considered in this paper. The new approach is based on arbitrary irregular meshes, the moving weighted least squares approximation and the local or various global formulations of boundary value problems. A priori and a posteriori errors constitute the important part of engineering problem analysis. The paper is focused on a...

متن کامل

A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity

A new approach to a posteriori error estimation and adaptive mesh design based on techniques from optimal control is presented for primal-mixed finite element models in elasto-plasticity. This method uses global duality arguments for deriving weighted a posteriori error bounds for arbitrary functionals of the error representing physical quantities of interest. In these estimates local residuals...

متن کامل

Weighted a Posteriori Error Control in Fe Methods

The conventional strategy for controlling the error in nite element (FE) methods is based on a posteriori estimates for the error in the global energy or L 2 norm involving local residuals of the computed solution (error indicators). Such estimates are derived via duality arguments where the approximation properties of the nite element space enter through local interpolation constants while the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005