Square-root actions, metric signature, and the path integral of quantum gravity.

نویسندگان

  • Carlini
  • Greensite
چکیده

We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in which the lapse function is determined from the Hamiltonian constraint. This action has a square root form, analogous to the actions of the relativistic particle and Nambu string. We argue that path-integral quantization of the gravitational action should be based on a path integrand exp[ √ iS] rather than the familiar Feynman expression exp[iS], and that unitarity requires integration over manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral to our previous considerations regarding the problem of time, and extend our approach to include fermions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Complexity in Cosmology and Quantum Gravity

In this article we use the idea of algorithmic complexity (AC) to study various cosmological scenarios, and as a means of quantizing the gravitational interaction. We look at 5D and 7D cosmological models where the Universe begins as a higher dimensional Planck size spacetime which fluctuates between Euclidean and Lorentzian signatures. These fluctuations are governed by the AC of the two diffe...

متن کامل

The Effect of Higher-order Curvature Terms on String Quantum Cosmology

Several new results regarding the quantum cosmology of higher-order gravity theories derived from superstring effective actions are presented. After describing techniques for solving the Wheeler-DeWitt equation with appropriate boundary conditions, it is shown that this quantum cosmological model may be compared with semiclassical theories of inflationary cosmology. In particular, it should be ...

متن کامل

ar X iv : h ep - t h / 97 08 08 8 v 1 1 5 A ug 1 99 7 Why Quantum Mechanics is Complex

The zero-signature Killing metric of a new, real-valued, 8-dimensional gauging of the conformal group accounts for the complex character of quantum mechanics. The new gauge theory gives manifolds which generalize curved, relativistic phase space. The difference in signature between the usual momentum space metric and the Killing metric of the new geometry gives rise to an imaginary proportional...

متن کامل

First-order Regge Calculus

A rst order form of Regge calculus is de ned in the spirit of Palatini's action for general relativity. The extra independent variables are the interior dihedral angles of a simplex, with conjugate variables the areas of the triangles. There is a discussion of the extent to which these areas can be used to parameterise the space of edge lengths of a simplex. hep-th/9404124 Regge's equations of ...

متن کامل

Classical and Quantum Integrability of 2D Dilaton Gravities in Euclidean space

Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. D, Particles and fields

دوره 52 12  شماره 

صفحات  -

تاریخ انتشار 1995