Random Polytopes, Convex Bodies, and Approximation
نویسنده
چکیده
Assume K ⊂ R is a convex body and Xn ⊂ K is a random sample of n uniform, independent points from K. The convex hull of Xn is a convex polytope Kn called random polytope inscribed in K. We are going to investigate various properties of this polytope: for instance how well it approximates K, or how many vertices and facets it has. It turns out that Kn is very close to the so called floating body inscribed in K with parameter 1/n. To show this we develop and use the technique of cap coverings and Macbeath regions. Its power will be illustrated, besides random polytopes, on several examples: floating bodies, lattice polytopes, and approximation problems.
منابع مشابه
Approximation of Smooth Convex Bodies by Random Circumscribed Polytopes
Choose n independent random points on the boundary of a convex body K ⊂Rd . The intersection of the supporting halfspaces at these random points is a random convex polyhedron. The expectations of its volume, its surface area and its mean width are investigated. In the case that the boundary of K is sufficiently smooth, asymptotic expansions as n→∞ are derived even in the case when the curvature...
متن کاملAsymptotic approximation of smooth convex bodies by general polytopes
For the optimal approximation of convex bodies by inscribed or circumscribed polytopes there are precise asymptotic results with respect to different notions of distance. In this paper we want to derive some results on optimal approximation without restricting the polytopes to be inscribed or circumscribed. Let Pn and P(n) denote the set of polytopes with at most n vertices and n facets, respec...
متن کاملRandom Points, Convex Bodies, Lattices
Assume K is a convex body in R, and X is a (large) finite subset of K. How many convex polytopes are there whose vertices come from X? What is the typical shape of such a polytope? How well the largest such polytope (which is actually convX) approximates K? We are interested in these questions mainly in two cases. The first is when X is a random sample of n uniform, independent points from K an...
متن کاملRandom Walks in a Convex Body and an Improved Volume Algorithm
We give a randomized algorithm using O(n7 log’ n ) separation calls to approximate the volume of a convex body with a fixed relative error. The bound is O(n6 log4 n ) for centrally symmetric bodies and for polytopes with a polynomial number of facets, and O(n5 log4 n ) for centrally symmetric polytopes with a polynomial number of facets. We also give an O(n6 log n ) algorithm to sample a point ...
متن کاملRandom Polytopes in Smooth Convex Bodies
Let K<= R be a convex body and choose points xl,x2 xn randomly, independently, and uniformly from K. Then Kn = conv {x, , . . . , *„} is a random polytope that approximates K (as n -») with high probability. Answering a question of Rolf Schneider we determine, up to first order precision, the expectation of vol K -vol Kn when K is a smooth convex body. Moreover, this result is extended to qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006