Factorizations in Schubert cells
نویسندگان
چکیده
For any reduced decomposition i = (i1, i2, . . . , iN ) of a permutation w and any ring R we construct a bijection Pi : (x1, x2, . . . , xN ) 7→ Pi1(x1)Pi2(x2) · · · PiN (xN ) from R to the Schubert cell of w, where Pi1(x1), Pi2(x2), . . . , PiN (xN ) stand for certain elementary matrices satisfying Coxeter-type relations. We show how to factor explicitly any element of a Schubert cell into a product of such matrices. We apply this to give a one-to-one correspondence between the reduced decompositions of w and the injective balanced labellings of the diagram of w, and to characterize commutation classes of reduced decompositions. Mathematics Subject Classification (1991): 20B30, 20G15, 05E15, 14M15, 15A23
منابع مشابه
Schubert Polynomials and Bott-Samelson Varieties
Schubert polynomials generalize Schur polynomials, but it is not clear how to generalize several classical formulas: the Weyl character formula, the Demazure character formula, and the generating series of semistandard tableaux. We produce these missing formulas and obtain several surprising expressions for Schubert polynomials. The above results arise naturally from a new geometric model of Sc...
متن کاملRiordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملBott-Samelson Varieties and Configuration Spaces
The Bott-Samelson varieties Z are a powerful tool in the representation theory and geometry of a reductive group G. We give a new construction of Z as the closure of a B-orbit in a product of flag varieties (G/B). This also gives an embedding of the projective coordinate ring of the variety into the function ring of a Borel subgroup: C[Z] ⊂ C[B]. In the case of the general linear group G = GL(n...
متن کاملNoncommutative Double Bruhat Cells and Their Factorizations
0. Introduction 1 1. Quasideterminants and Quasiminors 3 1.1. Definition of quasideterminants 3 1.2. Elementary properties of quasideterminants 4 1.3. Noncommutative Sylvester formula 5 1.4. Quasi-Plücker coordinates and Gauss LDU -factorization 5 1.5. Positive quasiminors 6 2. Basic factorizations in GLn(F) 7 3. Examples 11 3.1. A factorization in the Borel subgroup of GL3(F) 11 3.2. A factori...
متن کاملILU and IUL factorizations obtained from forward and backward factored approximate inverse algorithms
In this paper, an efficient dropping criterion has been used to compute the IUL factorization obtained from Backward Factored APproximate INVerse (BFAPINV) and ILU factorization obtained from Forward Factored APproximate INVerse (FFAPINV) algorithms. We use different drop tolerance parameters to compute the preconditioners. To study the effect of such a dropping on the quality of the ILU ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998