Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1+APP mouse.
نویسندگان
چکیده
Doubly transgenic mice expressing both a mutated amyloid precursor protein and a mutated presenilin-1 protein accumulate A(beta) deposits as they age. The early A(beta) deposits were found to be primarily composed of fibrillar A(beta) and resembled compact amyloid plaques. As the mice aged, nonfibrillar A(beta) deposits increased in number and spread to regions not typically associated with amyloid plaques in Alzheimer's disease. The fibrillar, amyloid-containing deposits remained restricted to cortical and hippocampal structures and did not increase substantially beyond the 12-month time point. Even at early time points, the fibrillar deposits were associated with dystrophic neurites and activated astrocytes expressing elevated levels of glial fibrillary acidic protein. Microglia similarly demonstrated increased staining for complement receptor-3 in the vicinity of A(beta) deposits at early time points. However, when MHC-II staining was used to assess the degree of microglial activation, full activation was not detected until mice were 12 months or older. Overall, the regional pattern of A(beta) staining resembles that found in Alzheimer disease; however, a progression from diffuse A(beta) to more compact amyloid deposits is not observed in the mouse model. It is noted that the activation of microglia at 12 months is coincident with the apparent stabilization of fibrillar A(beta) deposits, raising the possibility that activated microglia might clear fibrillar A(beta) deposits at a rate similar to their rate of formation, thereby establishing a relatively steady-state level of amyloid-containing deposits.
منابع مشابه
Targeting neuronal MAPK14/p38α activity to modulate autophagy in the Alzheimer disease brain
Dysregulated autophagic-lysosomal degradation of proteins has been linked to the most common genetic defect in familial Alzheimer disease, and has been correlated with disease progression in both human disease and in animal models. Recently, it was demonstrated that the expression of MAPK14/p38α protein is upregulated in the brain of APP-PS1 transgenic Alzheimer mouse and further that genetic d...
متن کاملImpact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model
There is increasing evidence that brain-derived neurotrophic factor (BDNF) plays a crucial role in Alzheimer's disease (AD) pathology. A number of studies demonstrated that AD patients exhibit reduced BDNF levels in the brain and the blood serum, and in addition, several animal-based studies indicated a potential protective effect of BDNF against Aβ-induced neurotoxicity. In order to further in...
متن کاملEnvironmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease.
Epidemiological studies of Alzheimer patients from a wide variety of ethnic and socioeconomic backgrounds have identified education and occupation as environmental factors that can affect the risk of developing disease. A model of environmental manipulation in rodents uses enriched housing to provide cognitive and social stimulation. Previous studies have established elevations in synaptic numb...
متن کاملAltered mechanisms of protein synthesis in frontal cortex in Alzheimer disease and a mouse model.
Expression of the nucleolar chaperones nucleolin (NCL) and nucleophosmin (NPM1), upstream binding transcription factor (UBTF), rRNA18S, rRNA28S, and several genes encoding ribosomal proteins (RPs) is decreased in frontal cortex area 8 at advanced stages of Alzheimer's disease (AD). This is accompanied by reduced protein levels of elongation factors eEF1A and eEF2. Changes are more marked in AD ...
متن کاملImmunocytochemical Characterization of Alzheimer Disease Hallmarks in APP/PS1 Transgenic Mice Treated with a New Anti-Amyloid-β Vaccine
APP/PS1 double-transgenic mouse models of Alzheimer's disease (AD), which overexpress mutated forms of the gene for human amyloid precursor protein (APP) and presenilin 1 (PS1), have provided robust neuropathological hallmarks of AD-like pattern at early ages. This study characterizes immunocytochemical patterns of AD mouse brain as a model for human AD treated with the EB101 vaccine. In this n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 173 2 شماره
صفحات -
تاریخ انتشار 2002