Autonomous Driving in Reality with Reinforcement Learning and Image Translation
نویسندگان
چکیده
Supervised learning is widely used in training autonomous driving vehicle. However, it is trained with large amount of supervised labeled data. Reinforcement learning can be trained without abundant labeled data, but we cannot train it in reality because it would involve many unpredictable accidents. Nevertheless, training an agent with good performance in virtual environment is relatively much easier. Because of the huge difference between virtual and real, how to fill the gap between virtual and real is challenging. In this paper, we proposed a novel framework of reinforcement learning with image semantic segmentation network to make the whole model adaptable to reality. The agent is trained in TORCS, a car racing simulator.
منابع مشابه
Virtual to Real Reinforcement Learning for Autonomous Driving
Reinforcement learning is considered as a promising direction for driving policy learning. However, training autonomous driving vehicle with reinforcement learning in real environment involves non-affordable trial-and-error. It is more desirable to first train in a virtual environment and then transfer to the real environment. In this paper, we propose a novel realistic translation network to m...
متن کاملSimulated Autonomous Driving on Realistic Road Networks using Deep Reinforcement Learning
Using Deep Reinforcement Learning (DRL) can be a promising approach to handle various tasks in the field of (simulated) autonomous driving. However, recent publications mainly consider learning in unusual driving environments. This paper presents Driving School for Autonomous Agents (DSA2), a software for validating DRL algorithms in more usual driving environments based on artificial and reali...
متن کاملCombining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving
With the development of state-of-art deep reinforcement learning, we can efficiently tackle continuous control problems. But the deep reinforcement learning method for continuous control is based on historical data, which would make unpredicted decisions in unfamiliar scenarios. Combining deep reinforcement learning and safety based control can get good performance for self-driving and collisio...
متن کاملElements of Effective Deep Reinforcement Learning towards Tactical Driving Decision Making
Tactical driving decision making is crucial for autonomous driving systems and has attracted considerable interest in recent years. In this paper, we propose several practical components that can speed up deep reinforcement learning algorithms towards tactical decision making tasks: 1) nonuniform action skipping as a more stable alternative to action-repetition frame skipping, 2) a counterbased...
متن کاملEnd-to-End Deep Reinforcement Learning for Lane Keeping Assist
Reinforcement learning is considered to be a strong AI paradigm which can be used to teach machines through interaction with the environment and learning from their mistakes, but it has not yet been successfully used for automotive applications. There has recently been a revival of interest in the topic, however, driven by the ability of deep learning algorithms to learn good representations of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.05299 شماره
صفحات -
تاریخ انتشار 2018