On the Complexity of Learning for Spiking Neurons with Temporal Coding

نویسندگان

  • Wolfgang Maass
  • Michael Schmitt
چکیده

Spiking neurons are models for the computational units in biological neural systems where information is considered to be encoded mainly in the temporal patterns of their activity. In a network of spiking neurons a new set of parameters becomes relevant which has no counterpart in traditional neural network models: the time that a pulse needs to travel through a connection between two neurons (also known as delay of a connection). It is known that these delays are tuned in biological neural systems through a variety of mechanisms. In this article we consider the arguably most simple model for a spiking neuron, which can also easily be implemented in pulsed VLSI. We investigate the Vapnik Chervonenkis (VC) dimension of networks of spiking neurons, where the delays are viewed as programmable parameters and we prove tight bounds for this VC dimension. Thus, we get quantitative estimates for the diversity of functions that a network with fixed architecture can compute with different settings of its delays. In particular, it turns out that a network of spiking neurons with k adjustable delays is able to compute a much richer class of functions than a threshold circuit with k adjustable weights. The results also yield bounds for the number of training examples that an algorithm needs for tuning the delays of a network of spiking neurons. Results about the computational complexity of such algorithms are also given. ] 1999 Academic Press Article ID inco.1999.2806, available online at http: www.idealibrary.com on

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks

Artificial neural networks are learning paradigms which mimic the biological neu­ ral system. The temporal coding Spiking Neural Network, a relatively new artifi­ cial neural network paradigm, is considered to be computationally more powerful than the conventional neural network. Research on the network of spiking neurons is an emerging field and has potential for wider investigation. This rese...

متن کامل

Spiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...

متن کامل

Hebbian Learning in Networks of Spiking Neurons Using Temporal Coding

Computational tasks in biological systems that require short response times can be implemented in a straightforward way by networks of spiking neurons that encode analogue values in temporal coding. We investigate the question how spiking neurons can learn on the basis of diierences between ring times. In particular, we provide learning rules of the Hebbian type in terms of single spiking event...

متن کامل

Error-backpropagation in temporally encoded networks of spiking neurons

For a network of spiking neurons that encodes information in the timing of individual spike-times, we derive a supervised learning rule, SpikeProp, akin to traditional error-backpropagation. With this algorithm, we demonstrate how networks of spiking neurons with biologically reasonable action potentials can perform complex non-linear classification in fast temporal coding just as well as rate-...

متن کامل

SpikeProp: backpropagation for networks of spiking neurons

For a network of spiking neurons with reasonable postsynaptic potentials, we derive a supervised learning rule akin to traditional error-back-propagation, SpikeProp and show how to overcome the discontinuities introduced by thresholding. Using this learning algorithm, we demonstrate how networks of spiking neurons with biologically plausible time-constants can perform complex non-linear classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 4  شماره 

صفحات  -

تاریخ انتشار 1997