Robust modified GA based multi-stage fuzzy LFC
نویسندگان
چکیده
In this paper, a robust genetic algorithm (GA) based multi-stage fuzzy (MSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In this strategy, the control signal is tuned online from the knowledge base and the fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of the membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by modified genetic algorithms. The classical genetic algorithms are powerful search techniques to find the global optimal area. However, the global optimum value is not guaranteed using this method, and the speed of the algorithm’s convergence is extremely reduced too. To overcome this drawback, a modified genetic algorithm is being used to tune the membership functions of the proposed MSF controller. The effectiveness of the proposed method is demonstrated on a three area restructured power system with possible contracted scenarios under large load demand and area disturbances in comparison with the multi-stage fuzzy and classical fuzzy PID controllers through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers. Moreover, this newly developed control strategy has a simple structure, does not require an accurate model of the plant and is fairly easy to implement, which can be useful for the real world complex power systems. 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Multi-Stage Fuzzy Load Frequency Control Based on Multi-objective Harmony Search Algorithm in Deregulated Environment
A new Multi-Stage Fuzzy (MSF) controller based on Multi-objective Harmony Search Algorithm (MOHSA) is proposed in this paper to solve the Load Frequency Control (LFC) problem of power systems in deregulated environment. LFC problem are caused by load perturbations, which continuously disturb the normal operation of power system. The objectives of LFC are to mini small size the transient deviati...
متن کاملA Robust Discrete FuzzyP+FuzzyI+FuzzyD Load Frequency Controller for Multi-Source Power System in Restructuring Environment
In this paper a fuzzy logic (FL) based load frequency controller (LFC) called discrete FuzzyP+FuzzyI+FuzzyD (FP+FI+FD) is proposed to ensure the stability of a multi-source power system in restructured environment. The whale optimization algorithm (WOA) is used for optimum designing the proposed control strategy to reduce fuzzy system effort and achieve the best performance of LFC task. Further...
متن کاملMulti-stage Fuzzy PID Load Frequency Control by Modified Shuffled Frog Leaping
Objective: A Modified Shuffled Frog Leaping (MSFL) algorithm based Multi-stage Fuzzy (MSF) PID controller is proposed in this paper to solve the Load Frequency Control (LFC) problem in a deregulated environment. The power system LFC problems are caused by small load perturbations which continuously disturb the normal operation of power system. The objectives of LFC are to minimize the transient...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملLoad-Frequency Control: a GA based Bayesian Networks Multi-agent System
Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007