EGR1 regulates hepatic clock gene amplitude by activating Per1 transcription
نویسندگان
چکیده
The mammalian clock system is composed of a master clock and peripheral clocks. At the molecular level, the rhythm-generating mechanism is controlled by a molecular clock composed of positive and negative feedback loops. However, the underlying mechanisms for molecular clock regulation that affect circadian clock function remain unclear. Here, we show that Egr1 (early growth response 1), an early growth response gene, is expressed in mouse liver in a circadian manner. Consistently, Egr1 is transactivated by the CLOCK/BMAL1 heterodimer through a conserved E-box response element. In hepatocytes, EGR1 regulates the transcription of several core clock genes, including Bmal1, Per1, Per2, Rev-erbα and Rev-erbβ, and the rhythm amplitude of their expression is dependent on EGR1's transcriptional function. Further mechanistic studies indicated that EGR1 binds to the proximal region of the Per1 promoter to activate its transcription directly. When the peripheral clock is altered by light or feeding behavior transposition in Egr1-deficient mice, the expression phase of hepatic clock genes shifts normally, but the amplitude is also altered. Our data reveal a critical role for EGR1 in the regulation of hepatic clock circuitry, which may contribute to the rhythm stability of peripheral clock oscillators.
منابع مشابه
NPAS2: an analog of clock operative in the mammalian forebrain.
Neuronal PAS domain protein 2 (NPAS2) is a transcription factor expressed primarily in the mammalian forebrain. NPAS2 is highly related in primary amino acid sequence to Clock, a transcription factor expressed in the suprachiasmatic nucleus that heterodimerizes with BMAL1 and regulates circadian rhythm. To investigate the biological role of NPAS2, we prepared a neuroblastoma cell line capable o...
متن کاملMolecular oscillation of Per1 and Per2 genes in the rodent brain: an in situ hybridization and molecular biological study.
The circadian rhythm is originally generated by a transcription-translation based oscillatory loop where Per1 and Per2 genes locate in its central. In the rat brain, rhythmic expressions of Per1 and Per2 were observed not only in neurons of the hypothalamic suprachiasmatic nucleus (SCN) but also in those of non-SCN regions including the cerebral cortex. The E-box enhancer elements possible to r...
متن کاملFeedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target
Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including Atf3 (activating transcription factor 3), Egr1 (early growth response 1) and Ptgs2 (prostaglandin-endoperoxide synthase 2) are rapidly and transiently up-regulated by endothelin-1 in cardiomyocytes. Atf3 regulates the expression of downstream genes and is implicated in negativ...
متن کاملDaily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma
BACKGROUND Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm var...
متن کاملIdentification of functional clock-controlled elements involved in differential timing of Per1 and Per2 transcription
It has been proposed that robust rhythmic gene expression requires clock-controlled elements (CCEs). Transcription of Per1 was reported to be regulated by the E-box and D-box in conventional reporter assays. However, such experiments are inconclusive in terms of how the CCEs and their combinations determine the phase of the Per1 gene. Whereas the phase of Per2 oscillation was found to be the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015