ON COMMON VALUES OF φ(n) AND σ(m), II

نویسندگان

  • KEVIN FORD
  • PAUL POLLACK
چکیده

For each positive-integer valued arithmetic function f , let Vf ⊂ N denote the image of f , and put Vf (x) := Vf ∩ [1, x] and Vf (x) := #Vf (x). Recently Ford, Luca, and Pomerance showed that Vφ ∩ Vσ is infinite, where φ denotes Euler’s totient function and σ is the usual sum-of-divisors function. Work of Ford shows that Vφ(x) ≍ Vσ(x) as x → ∞. Here we prove a result complementary to that of Ford et al., by showing that most φ-values are not σ-values, and vice versa. More precisely, we prove that as x → ∞, #{n 6 x : n ∈ Vφ ∩ Vσ} 6 Vφ(x) + Vσ(x) (log log x)1/2+o(1) .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON COMMON VALUES OF φ(n) AND σ(m), I

We show, conditional on a uniform version of the prime k-tuples conjecture, that there are x/(log x) numbers not exceeding x common to the ranges of φ and σ. Here φ is Euler’s totient function and σ is the sum-of-divisors function.

متن کامل

Common values of the arithmetic functions φ and σ Kevin

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a fifty-year-old conjecture of Erdős. Moreover, we show that, for some c > 0, there are infinitely many integers n such that φ(a) = n and σ(b) = n, each having more than n solutions. The proofs rely on the recent work of the first two author...

متن کامل

Common Values of the Arithmetic Functions

We show that the equation φ(a) = σ(b) has infinitely many solutions, where φ is Euler’s totient function and σ is the sum-of-divisors function. This proves a 50-year old conjecture of Erdős. Moreover, we show that there are infinitely many integers n such that φ(a) = n and σ(b) = n each have more than n solutions, for some c > 0. The proofs rely on the recent work of the first two authors and K...

متن کامل

A class of ℐ-conservative matrices

Let ∞ and c be the Banach spaces of bounded and convergent sequence x = (xk) with the usual supremum norm. Let σ be a one-to-one mapping of N, the set of positive integers, into itself and T : ∞ → ∞ a linear operator defined by Tx = (Txk)= (xσ(k)). An element φ ∈ ′ ∞, the conjugate space of ∞, is called an invariant mean or a σ-mean if and only if (i) φ(x) ≥ 0 when the sequence x = (xk) has xk ...

متن کامل

Call-by-Value in a Basic Logic for Interaction

ion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× σ′ (γ × nat)× σ′ γ × σ nat× (γ × σ′) Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× τ γ × σ ∀σ.∃φ.∀τ . φ× σ (φ× nat)× τ nat× (φ× τ) λx:X.M Abstraction of Γ, x : N `M : Nion of Γ, x : N `M : N nat× σ (γ × nat)× σ M ∀σ. nat× τ γ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012