Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms

نویسندگان

  • Tom Froese
  • Sillas Hadjiloucas
  • Roberto Kawakami Harrop Galvão
  • Victor M. Becerra
  • Clarimar José Coelho
چکیده

This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MIT– BIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data was presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص آریتمی انقباضات زودرس بطنی در سیگنال الکتریکی قلب با استفاده ازترکیب طبقه‌بندها

Cardiovascular diseases are the most dangerous diseases and one of the biggest causes of fatality all over the world. One of the most common cardiac arrhythmias which has been considered by physicians is premature ventricular contraction (PVC) arrhythmia. Detecting this type of arrhythmia due to its abundance of all ages, is particularly important. ECG signal recording is a non-invasive, popula...

متن کامل

Fixing of Cycle Slips in Dual-Frequency GPS Phase Observables using Discrete Wavelet Transforms

The occurrence of cycle slips is a major limiting factor for achievement of sub-decimeter accuracy in positioning with GPS (Global Positioning System). In the past, several authors introduced a method based on different combinations of GPS data together with Kalman filter to solve the problem of the cycle slips. In this paper the same philosophy is used but with discrete wavelet transforms. For...

متن کامل

ECG Signal Compression Using Different Techniques

In this paper, a transform based methodology is presented for compression of electrocardiogram (ECG) signal. The methodology employs different transforms such as Discrete Wavelet Transform (DWT), Fast Fourier Transform (FFT) and Discrete Cosine Transform (DCT). A comparative study of performance of different transforms for ECG signal is made in terms of Compression ratio (CR), Percent root mean...

متن کامل

Qrs Complex Detection of Ecg Signal Using Wavelet Transform

The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Generally, the recorded ECG signal is often contaminated by noise. In order to extract useful information from the noisy ECG signals, the raw ECG signals has to be processed. The baseline wandering is significant and can strongly affect ECG signal analysis. The detection of QRS complexes in an ECG signal provides inform...

متن کامل

An Optimal Wavelet Approach for ECG Noise Cancellation

Electrocardiogram (ECG) is a vital biomedical signal for diagnosing heart diseases, but now it has many other applications like stress recognition, biometric recognition, etc. But ECG signal gets noisy from various sources like as muscle noise, electrode artifacts, baseline drift noise and respiration. As wavelet transforms shows a good performance in denoising the ECG signal however, the selec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006