Coupling of changes in cerebral blood flow with neural activity: what must initially dip must come back up.
نویسنده
چکیده
Activation flow coupling, increases in neuronal activity leading to changes in cerebral blood flow (CBF), is the basis of many neuroimaging methods. An early rise in deoxygenation, the "initial dip," occurs before changes in CBF and cerebral blood volume (CBV) and may provide a better spatial localizer of early neuronal activity compared with subsequent increases in CBF. Imaging modality, anesthetic, degree of oxygenation, and species can influence the magnitude of this initial dip. The observed initial dip may reflect a depletion of mitochondrial oxygen (O(2)) buffers caused by increased neuronal activity. Changes in CBF mediated by nitric oxide (NO) or other metabolites and not caused by a lack of O(2) or energy depletion most likely lead to an increased delivery of capillary O(2) in an attempt to maintain intracellular O(2) buffers.
منابع مشابه
The Bimodal Nature of Neurovascular Coupling
Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed ...
متن کاملNonlinear coupling of neural activity and CBF in rodent barrel cortex.
The relationship between neural activity and accompanying changes in cerebral blood flow (CBF) and oxygenation must be fully understood before data from brain imaging techniques can be correctly interpreted. Whether signals in fMRI reflect the neural input or output of an activated region is still unclear. Similarly, quantitative relationships between neural activity and changes in CBF are not ...
متن کاملNeurovascular coupling - Scholarpedia
Neurovascular coupling refers to the relationship between local neural activity and subsequent changes in cerebral blood flow (CBF). The magnitude and spatial location of blood flow changes are tightly linked to changes in neural activity through a complex sequence of coordinated events involving neurons, glia, and vascular cells. Many vascular-based functional brain imaging techniques, such as...
متن کاملSensitivity of neural-hemodynamic coupling to alterations in cerebral blood flow during hypercapnia.
The relationship between measurements of cerebral blood oxygenation and neuronal activity is highly complex and depends on both neurovascular and neurometabolic biological coupling. While measurements of blood oxygenation changes via optical and MRI techniques have been developed to map functional brain activity, there is evidence that the specific characteristics of these signals are sensitive...
متن کاملAbnormal oxygen homeostasis in the nucleus tractus solitarii of the spontaneously hypertensive rat
NEW FINDINGS What is the central question of this study? Arterial hypertension is associated with impaired neurovascular coupling in the somatosensory cortex. Abnormalities in activity-dependent oxygen consumption in brainstem regions involved in the control of cardiovascular reflexes have not been explored previously. What is the main finding and its importance? Using fast-cyclic voltammetry, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2004