Practical constraints on estimation of source extent with MEG beamformers

نویسندگان

  • Arjan Hillebrand
  • Gareth R. Barnes
چکیده

We aimed to determine practical constraints on the estimation of the spatial extent of neuronal activation using MEG beamformers. Correct estimation of spatial extent is a pre-requisite for accurate models of electrical activity, allows one to estimate current density, and enables non-invasive monitoring of functional recovery following stroke. The output of an MEG beamformer is maximum when the correct source model is used, so that the spatial extent of a source can in principal be determined through evaluation of different source models with the beamformer. Here, we simulated 275-channel MEG data using sources of varying spatial extents that followed the cortical geometry. These data were subsequently used to estimate the spatial extent of generic disc elements without knowledge of the underlying surface, and we compared these results to estimates based on cortical surface geometry (with and without error in surface location). We found that disc-shaped source models are too simplistic, particularly for areas with high curvature. For areas with low curvature spatial extent was underestimated, although on average there was a linear relationship between the true and estimated extent. In contrast, cortical surface models gave accurate predictions of spatial extent. However, adding small errors (>2 mm) to the estimated location of the cortical surface abolished this relationship between true and estimated extent, implying that accurate co-registration is needed with such models. Our results show that models exploiting surface information are necessary in order to model spatial extent and in turn current density, but in order to render such models applicable in practical situations, the accuracy of the cortical surface model itself needs to improve.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On linearly constrained minimum variance beamforming

Beamforming is a widely used technique for source localization in signal processing and neuroimaging. A number of vector-beamformers have been introduced to localize neuronal activity by using magnetoencephalography (MEG) data in the literature. However, the existing theoretical analyses on these beamformers have been limited to simple cases, where no more than two sources are allowed in the as...

متن کامل

Source Activity Correlation Effects on LCMV Beamformers in a Realistic Measurement Environment

In EEG and MEG studies on brain functional connectivity and source interactions can be performed at sensor or source level. Beamformers are well-established source-localization tools for MEG/EEG signals, being employed in source connectivity studies both in time and frequency domain. However, it has been demonstrated that beamformers suffer from a localization bias due to correlation between so...

متن کامل

Sparse current source estimation for MEG using loose orientation constraints.

Spatially focal source estimates for magnetoencephalography (MEG) and electroencephalography (EEG) data can be obtained by imposing a minimum ℓ(1) -norm constraint on the distribution of the source currents. Anatomical information about the expected locations and orientations of the sources can be included in the source models. In particular, the sources can be assumed to be oriented perpendicu...

متن کامل

Neuromagnetic Source Estimation and Coherence Mapping of Brain Activities Neuromagnetic Source Estimation and Coherence Mapping of Brain Activities Neuromagnetic Source Estimation and Coherence Mapping of Brain Activities

Magnetoencephalography (MEG) non-invasively measures the electromagnetic signals induced by brain activities. It can provide spatiotemporal brain activation imaging with high temporal resolution to facilitate functional brain research in both clinical and basic neuroscience fields. In this thesis, we propose novel spatial filtering techniques for statistical mapping of neuronal sources as well ...

متن کامل

Comparison of beamformers for EEG source signal reconstruction

Recently, several new beamformers have been introduced for reconstruction and localization of neural sources from EEG and MEG. Although studies have compared the accuracy of beamformers for localization of strong sources in the brain, a comparison of new and conventional beamformers for time-course reconstruction of a desired source has not been previously undertaken. In this study, 8 beamforme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011