Regional dendritic and spine variation in human cerebral cortex: a quantitative golgi study.

نویسندگان

  • B Jacobs
  • M Schall
  • M Prather
  • E Kapler
  • L Driscoll
  • S Baca
  • J Jacobs
  • K Ford
  • M Wainwright
  • M Treml
چکیده

The present study explored differences in dendritic/spine extent across several human cortical regions. Specifically, the basilar dendrites/spines of supragranular pyramidal cells were examined in eight Brodmann's areas (BA) arranged according to Benson's (1993, Behav Neurol 6:75-81) functional hierarchy: primary cortex (somatosensory, BA3-1-2; motor, BA4), unimodal cortex (Wernicke's area, BA22; Broca's area, BA44), heteromodal cortex (supple- mentary motor area, BA6beta; angular gyrus, BA39) and supramodal cortex (superior frontopolar zone, BA10; inferior frontopolar zone, BA11). To capture more general aspects of regional variability, primary and unimodal areas were designated as low integrative regions; heteromodal and supramodal areas were designated as high integrative regions. Tissue was obtained from the left hemisphere of 10 neurologically normal individuals (M(age) = 30 +/- 17 years; five males, five females) and stained with a modified rapid Golgi technique. Ten neurons were sampled from each cortical region (n = 800) and evaluated according to total dendritic length, mean segment length, dendritic segment count, dendritic spine number and dendritic spine density. Despite considerable inter-individual variation, there were significant differences across the eight Brodmann's areas and between the high and low integrative regions for all dendritic and spine measures. Dendritic systems in primary and unimodal regions were consistently less complex than in heteromodal and supramodal areas. The range within these rankings was substantial, with total dendritic length in BA10 being 31% greater than that in BA3-1-2, and dendritic spine number being 69% greater. These findings demonstrate that cortical regions involved in the early stages of processing (e.g. primary sensory areas) generally exhibit less complex dendritic/spine systems than those regions involved in the later stages of information processing (e.g. prefrontal cortex). This dendritic progression appears to reflect significant differences in the nature of cortical processing, with spine-dense neurons at hierarchically higher association levels integrating a broader range of synaptic input than those at lower cortical levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional dendritic variation in neonatal human cortex: a quantitative Golgi study.

The present study quantitatively compared the basilar dendritic/spine systems of lamina V pyramidal neurons across four hierarchically arranged regions of neonatal human neocortex. Tissue blocks were removed from four Brodmann's areas (BAs) in the left hemisphere of four neurologically normal neonates (mean age=41+/- 40 days): primary (BA4 and BA3-1-2), unimodal (BA18), and supramodal cortices ...

متن کامل

Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans.

The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in...

متن کامل

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

Regional Dendritic Variation in Neonatal Human Cortex: A Quantitative Golgi Analysis

Basilar dendritic systems of lamina V pyramidal neurons were quantified to compare cellular differences across four regions of the neonatal cortex. Tissue was removed from the left hemisphere of four neurologically normal infants, and represented regions of Benson’s (1994) hierarchically arranged cortical processing model (low-integrative regions: primary areas, Brodmann’s area (BA) BA 4 and BA...

متن کامل

The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study.

Although the primate insular cortex has been studied extensively, a comprehensive investigation of its neuronal morphology has yet to be completed. To that end, neurons from 20 human subjects (10 males and 10 females; N = 600) were selected from the secondary gyrus brevis, precentral gyrus, and postcentral gyrus of the left insula. The secondary gyrus brevis was generally more complex in terms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 11 6  شماره 

صفحات  -

تاریخ انتشار 2001