Radiation transport modeling using extended quadrature method of moments
نویسندگان
چکیده
The radiative transfer equation describes the propagation of radiation through a material medium. While it provides a highly accurate description of the radiation field, the large phase space on which the equation is defined makes it numerically challenging. As a consequence, significant effort has gone into the development of accurate approximation methods. Recently, an extended quadrature method of moments (EQMOM) has been developed to solve univariate population balance equations, which also have a large phase space and thus face similar computational challenges. The distinct advantage of the EQMOM approach over other moment methods is that it generates moment equations that are consistent with a positive phase space density and has a moment inversion algorithm that is fast and efficient. The goal of the current paper is to present the EQMOM method in the context of radiation transport, to discuss advantages and disadvantages, and to demonstrate its performance on a set of standard one-dimensional benchmark problems that encompass optically thin, thick, and transition regimes. Special attention is given in the implementation to the issue of realizability—that is, consistency with a positive phase space density. Numerical results in one dimension are promising and lay the foundation for extending the same framework to multiple dimensions. 2013 Elsevier Inc. All rights reserved.
منابع مشابه
Simulations of transport in one dimension
Advection-dispersion equation is solved in numerically by using combinations of differential quadrature method (DQM) and various time integration techniques covering some explicit or implicit single and multi step methods. Two different initial boundary value problems modeling conservative and nonconservative transports of some substance represented by initial data are chosen as test problems. ...
متن کاملModeling of Nanofiltration for Concentrated Electrolyte Solutions using Linearized Transport Pore Model
In this study, linearized transport pore model (LTPM) is applied for modeling nanofiltration (NF) membrane separation process. This modeling approach is based on the modified extended Nernst-Planck equation enhanced by Debye-Huckel theory to take into account the variations of activity coefficient especially at high salt concentrations. Rejection of single-salt (NaCl) electrolyte is inve...
متن کاملA realizable multivariate quadrature based approach for supersonic combustion modeling in LES
Filtered value of the combustion source term in large eddy simulation (LES) can be accurately estimated using the joint probability density function (PDF) of species mass fraction and enthalpy. Computing the PDF using traditional stochastic methods in shock-containing flows however leads to numerical instabilities. Recently an accurate quadrature based method called semi-discrete quadrature met...
متن کاملStable Computation of High Order Gauss Quadrature Rules Using Discretization for Measures in Radiation Transfer
The solution of the radiation transfer equation for the Earth's atmosphere needs to account for the re ectivity of the ground. When using the spherical harmonics method, the solution for this term involves an integral with a particular measure that presents numerical challenges. We are interested in computing a high order Gauss quadrature rule for this measure. We show that the two classical al...
متن کاملAnalysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method
The new version of differential quadrature (DQ) method is extended to analyze the free vibration of thin sector orthotropic plates on the Pasternak elastic foundation with various sector angles and elastic parameters. Detailed formulations are given. Comparisons are made with existing analytical and/or numerical data. Numerical results indicate that convergence can be achieved with increasing i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 246 شماره
صفحات -
تاریخ انتشار 2013