Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons.

نویسندگان

  • J A Winer
  • J J Prieto
چکیده

The cytoarchitectonic organization and the structure of layer V neuronal populations in cat primary auditory cortex (AI) were analyzed in Golgi, Nissl, immunocytochemical, and plastic-embedded preparations from mature specimens. The major cell types were characterized as a prelude to identifying their connections with the thalamus, midbrain, and cerebral cortex using axoplasmic transport methods. The goal was to describe the structure and connections of layer V neurons more fully. Layer V has three sublayers based on the types of neuron and their sublaminar projections. Four types of pyramidal and three kinds of nonpyramidal cells were present. Classic pyramidal cells had a long apical dendrite, robust basal arbors, and an axon with both local and corticofugal projections. Only the largest pyramidal cell apical dendrites reached the supragranular layers, and their somata were found mainly in layer Vb. Three types departed from the classic pattern; these were the star, fusiform, and inverted pyramidal neurons. Nonpyramidal cells ranged from large multipolar neurons with radiating dendrites, to Martinotti cells, with smooth dendrites and a primary trunk oriented toward the white matter. Many nonpyramidal cells were multipolar, of which three subtypes (large, medium, and small) were identified; bipolar and other types also were seen. Their axons formed local projections within layer V, often near pyramidal neurons. Several features distinguish layer V from other layers in AI. The largest pyramidal neurons were in layer V. Layer V neuronal diversity aligns it with layer VI (Prieto and Winer [1999] J. Comp. Neurol. 404:332--358), and it is consistent with the many connectional systems in layer V, each of which has specific sublaminar and neuronal origins. The infragranular layers are the source for several parallel descending systems. There were significant differences in somatic size among these projection neurons. This finding implies that diverse corticofugal roles in sensorimotor processing may require a correspondingly wide range of neuronal architecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons.

The organization of layer VI in cat primary auditory cortex (AI) was studied in mature specimens. Golgi-impregnated neurons were classified on the basis of their dendritic and somatic form. Ipsilateral and contralateral projection neurons and the corticogeniculate cells of origin were labeled with retrograde tracers and their profiles were compared with the results from Golgi studies. Layer VI ...

متن کامل

Laminar diversity of dynamic sound processing in cat primary auditory cortex.

For primary auditory cortex (AI) laminae, there is little evidence of functional specificity despite clearly expressed cellular and connectional differences. Natural sounds are dominated by dynamic temporal and spectral modulations and we used these properties to evaluate local functional differences or constancies across laminae. To examine the layer-specific processing of acoustic modulation ...

متن کامل

Local connection patterns of parvalbumin-positive inhibitory interneurons in rat primary auditory cortex.

In the auditory cortex (AC), GABAergic neurons constitute approximately 15-25% of all neurons. GABAergic cells are present in all sensory modalities and essential for modulating sensory receptive fields. Parvalbumin (PV) positive cells represent the largest sub-group of the GABAergic population in auditory neocortex. We investigated the projection pattern of PV cells in rat primary auditory cor...

متن کامل

Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex

BACKGROUND Radial intra- and interlaminar connections form a basic microcircuit in primary auditory cortex (AI) that extracts acoustic information and distributes it to cortical and subcortical networks. Though the structure of this microcircuit is known, we do not know how the functional connectivity between layers relates to laminar processing. METHODOLOGY/PRINCIPAL FINDINGS We studied the ...

متن کامل

Comparative study of inter- and intrahemispheric cortico-cortical connections in gerbil auditory cortex.

Topographic distributions and laminar pattern of cortico-cortical projections from the primary auditory field (AI), anterior auditory field (AAF), dorsoposterior field (DP), ventroposterior field (VP), dorsal field (D) and ventral field (V) were studied in relation to tonotopic maps in combined anatomical, electrophysiological and 2-deoxyfluoro-D-glucose (2DG) experiments. Distributions of axon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 434 4  شماره 

صفحات  -

تاریخ انتشار 2001