Molecular dynamic study of orotidine-5'-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203-218 loop dynamics.
نویسندگان
چکیده
Molecular dynamics simulations have been used to derive the structures of ground (orotidine-5'-monophosphate decarboxylase x orotidine 5'-monophosphate; ODC x OMP) and intermediate (ODC x intermediate; ODC x I(-)) states in the ODC-catalyzed decarboxylation of OMP. For comparison, a molecular dynamics simulation of the conformers of OMP dissolved in water was also studied. This structural information is unavailable from present crystal structures. The electrostatic network in the active site around the carboxylate moiety of OMP exhibits remarkable stability. The conformation of enzyme-bound OMP is very similar to the conformation of OMP in water. Thus, the proposed Circe effect mechanism for ODC catalysis is unlikely. Comparison of ground state and intermediate state structures shows that on decarboxylation C6 takes the position of the carboxylate O8. This significant movement of the ligand is accompanied by a placement of the C6 carbanion in the vicinity of the protonated Lys-93 and is enforced by a change of the 203-218 loop from an unstructured form to an ordered beta-hairpin. Previously proposed mechanisms involving protonation at O2, O4, or C5 have in common internal stabilization of the anionic intermediate by conjugation with positive charge on the pyrimidine ring. These mechanisms are not supported because there are no proton sources near O2, O4, and C5. We propose that the stabilization of intermediate ODC x I(-) is achieved by movement of the carbanion toward the external cation Lys-93 on decarboxylation and organization of the 203-218 loop. Because the intermediate and transition state are energetically similar, stabilization of the former decreases the free energy content of the latter.
منابع مشابه
Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase.
Orotidine 5'-monophosphate decarboxylase catalyzes the conversion of orotidine 5'-monophosphate to uridine 5'-monophosphate, the last step in biosynthesis of pyrimidine nucleotides. As part of a Structural Genomics Initiative, the crystal structures of the ligand-free and the6-azauridine 5'-monophosphate-complexed forms have been determined at 1.8 and 1.5 A, respectively. The protein assumes a ...
متن کاملThe crystal structure and mechanism of orotidine 5'-monophosphate decarboxylase.
The crystal structure of Bacillus subtilis orotidine 5'-monophosphate (OMP) decarboxylase with bound uridine 5'-monophosphate has been determined by multiple wavelength anomalous diffraction phasing techniques and refined to an R-factor of 19.3% at 2.4 A resolution. OMP decarboxylase is a dimer of two identical subunits. Each monomer consists of a triosephosphate isomerase barrel and contains a...
متن کاملCatalysis by enzyme conformational change as illustrated by orotidine 5'-monophosphate decarboxylase.
An energy decomposition scheme has been used to elucidate the importance of the changes of enzyme conformational substates to the reduction of the activation barrier in enzyme-catalyzed reactions. This analysis may be illustrated by the reaction of orotidine 5'-monophosphate decarboxylase, which exhibits a remarkable rate enhancement of over 17 orders of magnitude compared to the uncatalyzed pr...
متن کاملGlobal Stabilization of Attitude Dynamics: SDRE-based Control Laws
The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...
متن کاملStructural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase.
Orotidine 5'-monophoshate decarboxylase (OMPDC) catalyses the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP). Here, we report the X-ray analysis of apo, substrate or product-complex forms of OMPDC from Plasmodium falciparum (PfOMPDC) at 2.7, 2.65 and 2.65 A, respectively. The structural analysis provides the substrate recognition mechanism with dynamic str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 15 شماره
صفحات -
تاریخ انتشار 2002