A Chart Re-estimation Algorithm for a Probabilistic Recursive Transition Network
نویسندگان
چکیده
A Probabilistic Recursive Transition Network is an elevated version of a Recursive Transition Network used to model and process context-free languages in stochastic parameters. We present a re-estimation algorithm for training probabilistic parameters, and show how efficiently it can be implemented using charts. The complexity of the Outside algorithm we present is O(N4G 3) where N is the input size and G is the number of states. This complexity can be significantly overcome when the redundant computations are avoided. Experiments on the Penn tree corpus show that re-estimation can be done more efficiently with charts.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملParsing with Lexicalized Probabilistic Recursive Transition Networks
We present a formalization of lexicalized Recursive Transition Networks which we call Automaton-Based Generative Dependency Grammar (gdg). We show how to extract a gdg from a syntactically annotated corpus, present a chart parser for gdg, and discuss different probabilistic models which are directly implemented in the finite automata and do not affect the parser.
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کاملA Fire Ignition Model and Its Application for Estimating Loss due to Damage of the Urban Gas Network in an Earthquake
Damage of the urban gas network due to an earthquake can cause much loss including fire-induced loss to infrastructure and loss due to interruption of gas service and repairing or replacing of network elements. In this paper, a new fire ignition model is proposed and applied to a conventional semi-probabilistic model for estimating various losses due to damage of an urban gas network in an eart...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Linguistics
دوره 22 شماره
صفحات -
تاریخ انتشار 1996