Relevance Feedback for Content-Based Image Retrieval Using Support Vector Machines and Feature Selection

نویسندگان

  • Apostolos Marakakis
  • Nikolas P. Galatsanos
  • Aristidis Likas
  • Andreas Stafylopatis
چکیده

A relevance feedback (RF) approach for content-based image retrieval (CBIR) is proposed, which is based on Support Vector Machines (SVMs) and uses a feature selection technique to reduce the dimensionality of the image feature space. Specifically, each image is described by a multidimensional vector combining color, texture and shape information. In each RF round, the positive and negative examples provided by the user are used to determine a relatively small number of the most important features for the corresponding classification task, via a feature selection methodology. After the feature selection has been performed, an SVM classifier is trained to distinguish between relevant and irrelevant images according to the preferences of the user, using the restriction of the user examples on the set of selected features. The trained classifier is subsequently used to provide an updated ranking of the database images represented in the space of the selected features. Numerical experiments are presented that demonstrate the merits of the proposed relevance feedback methodology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Feature Space Selection in Relevance Feedback Using Support Vector Machines

The selection of relevant features plays a critical role in relevance feedback for content-based image retrieval. In this paper, we propose an approach for dynamically selecting the most relevant feature space in relevance feedback. During the feedback process, an SVM classifier is constructed in each feature space, and its generalization error is estimated. The feature space with the smallest ...

متن کامل

SVM-based Relevance Feedback in Image Retrieval using Invariant Feature Histograms

Relevance Feedback is an interesting procedure to improve the performance of Content-Based Image Retrieval systems even when using low-level features alone. In this work we compare the efficiency of one class and two class Support Vector Machines in content-based image retrieval using Invariant Feature Histograms. We describe our methodology of performing Relevance Feedback in both cases and re...

متن کامل

Update Relevant Image Weights for Content-Based Image Retrieval using Support Vector Machines

Relevance feedback [1] has been a powerful tool for interactive Content-Based Image Retrieval (CBIR). During the retrieval process, the user selects the most relevant images and provides a weight of preference for each relevant image. User’s high level query and perception subjectivity can be captured to some extent by dynamically updated low-level feature weights based on the user’s feedback. ...

متن کامل

Using Biased Support Vector Machine to Improve Retrieval Result in Image Retrieval with Self-organizing Map

The relevance feedback approach is a powerful technique in content-based image retrieval (CBIR) tasks. In past years, many intraquery learning techniques have been proposed to solve the relevance feedback problem. Among these techniques, Support Vector Machines (SVM) have shown promising results in the area. More specifically, in relevance feedback applications the SVMs are typically been used ...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009