A Compactness Theorem for Homogenization of Parabolic Partial Differential Equations

نویسنده

  • Hee Chul Pak
چکیده

It is well known that the modeling of physical processes in strongly inhomogeneous media leads to the study of differential equations with rapidly varying coefficients. Regarding coefficients as periodic functions, many attempts for getting approximate solutions are accomplished, and some of successful ones are G-convergence by Spagnolo, H-convergence by Tartar and Γ-convergence by De Giorgi. Another common way is to use formal asymptotic expansion we first guess by a formal expansion what the limit should be and then justify it by energy method. Two-scale convergence defined by G. Allaire ([1]) is an efficient way of combining these two procedures two-scale convergence guarantees the least amount of convergent degree, which is stronger than weak convergence and weaker than norm convergence. But it is restricted to the elliptic cases. For studying parabolic differential equations, the convergent nature is not clear and even two-scale convergence can not be applied directly. Even though stationary problems corresponding to the given parabolic problems may be considered for homogenization process, the convergent relationship between stationary problems and non-stationary problems is not justified by the two-scale convergence defined by G. Allaire. In this note, we present a new

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations

In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...

متن کامل

New operators through measure of non-compactness

In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...

متن کامل

Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations

Gradient schemes is a framework that enables the unified convergence analysis of many numerical methods for elliptic and parabolic partial differential equations: conforming and non-conforming Finite Element, Mixed Finite Element and Finite Volume methods. We show here that this framework can be applied to a family of degenerate non-linear parabolic equations (which contain in particular the Ri...

متن کامل

On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations

We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail. In the later situation we also pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003