A hybrid evolutionary algorithm for attribute selection in data mining
نویسندگان
چکیده
0957-4174/$ see front matter 2008 Published by doi:10.1016/j.eswa.2008.10.013 * Corresponding author. E-mail address: [email protected] (K.C. Tan). Real life data sets are often interspersed with noise, making the subsequent data mining process difficult. The task of the classifier could be simplified by eliminating attributes that are deemed to be redundant for classification, as the retention of only pertinent attributes would reduce the size of the dataset and subsequently allow more comprehensible analysis of the extracted patterns or rules. In this article, a new hybrid approach comprising of two conventional machine learning algorithms has been proposed to carry out attribute selection. Genetic algorithms (GAs) and support vector machines (SVMs) are integrated effectively based on a wrapper approach. Specifically, the GA component searches for the best attribute set by applying the principles of an evolutionary process. The SVM then classifies the patterns in the reduced datasets, corresponding to the attribute subsets represented by the GA chromosomes. The proposed GA-SVM hybrid is subsequently validated using datasets obtained from the UCI machine learning repository. Simulation results demonstrate that the GA-SVM hybrid produces good classification accuracy and a higher level of consistency that is comparable to other established algorithms. In addition, improvements are made to the hybrid by using a correlation measure between attributes as a fitness measure to replace the weaker members in the population with newly formed chromosomes. This injects greater diversity and increases the overall fitness of the population. Similarly, the improved mechanism is also validated on the same data sets used in the first stage. The results justify the improvements in the classification accuracy and demonstrate its potential to be a good classifier for future data mining purposes. 2008 Published by Elsevier Ltd.
منابع مشابه
A Hybrid DEA Based CHAID and Imperialist Competitive Algorithm for Stock Selection
In this paper, the investment portfolio is formed based on the data mining algorithm of CHAID on the basis of the risk status criteria. In the next step, the second investment portfolio is created based on the decision rules extracted by the DEA-BCC model. The final portfolio is created through a two-objective mathematical programming model based on the Imperialist Competitive algorithm.
متن کاملAn Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem
This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...
متن کاملA Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors
Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملADVANCES IN INTELLIGENT DATA PROCESSING AND ANALYSIS Hybrid evolutionary algorithms for classification data mining
In this paper, we propose novel methods to find the best relevant feature subset using fuzzy rough set-based attribute subset selection with biologically inspired algorithm search such as ant colony and particle swarm optimization and the principles of an evolutionary process. We then propose a hybrid fuzzy rough with K-nearest neighbor (KNN)-based classifier (FRNN) to classify the patterns in ...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009