Ant Colony Optimization Algorithm for Interpretable Bayesian Classifiers Combination: Application to Medical Predictions

نویسندگان

  • Salah Bouktif
  • Eileen Marie Hanna
  • Nazar Zaki
  • Eman Abu Khousa
چکیده

UNLABELLED Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models' interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions. AVAILABILITY The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ant colony algorithms for constructing Bayesian multi-net classifiers

Bayesian Multi-nets (BMNs) are a special kind of Bayesian network (BN) classifiers that consist of several local Bayesian networks, one for each predictable class, to model an asymmetric set of variable dependencies given each class value. Deterministic methods using greedy local search are the most frequently used methods for learning the structure of BMNs based on optimizing a scoring functio...

متن کامل

Estimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models

In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...

متن کامل

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

Classification with cluster-based Bayesian multi-nets using Ant Colony Optimisation

Bayesian Multi-net (BMN) classifiers consist of several local models, one for each data subset, to model asymmetric, more consistent dependency relationships among variables in each subset. This paper extends an earlier work of ours and proposes several contributions to the field of clustering-based BMN classifiers, using Ant Colony Optimization (ACO). First, we introduce a new medoidbased meth...

متن کامل

ANT COLONY SEARCH METHOD IN PRACTICAL STRUCTURAL OPTIMIZATION

This paper is concerned with application and evaluation of ant colony optimization (ACO) method to practical structural optimization problems. In particular, a size optimum design of pin-jointed truss structures is considered with ACO such that the members are chosen from ready sections for minimum weight design. The application of the algorithm is demonstrated using two design examples with pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014