Sequential Pattern Mining : Survey and Current Research Challenges
نویسندگان
چکیده
185 Abstract— The concept of sequence Data Mining was first introduced by Rakesh Agrawal and Ramakrishnan Srikant in the year 1995. The problem was first introduced in the context of market analysis. It aimed to retrieve frequent patterns in the sequences of products purchased by customers through time ordered transactions. Later on its application was extended to complex applications like telecommunication, network detection, DNA research, etc. Several algorithms were proposed. The very first was Apriori algorithm, which was put forward by the founders themselves. Later more scalable algorithms for complex applications were developed. E.g. GSP, Spade, PrefixSpan etc. The area underwent considerable advancements since its introduction in a short span. In this paper, a systematic survey of the sequential pattern mining algorithms is performed. This paper investigates these algorithms by classifying study of sequential pattern-mining algorithms into two broad categories. First, on the basis of algorithms which are designed to increase efficiency of mining and second, on the basis of various extensions of sequential pattern mining designed for certain application. At the end, comparative analysis is done on the basis of important key features supported by various algorithms and current research challenges are discussed in this field of data mining.
منابع مشابه
Distributed Sequential Pattern Mining: A Survey and Future Scope
Distributed sequential pattern mining is the data mining method to discover sequential patterns from large sequential database on distributed environment. It is used in many wide applications including web mining, customer shopping record, biomedical analysis, scientific research, etc. A large research has been done on sequential pattern mining on various distributed environments like Grid, Had...
متن کاملKnowledge Discovery from Web Usage Data: Research and Development of Web Access Pattern Tree Based Sequential Pattern Mining Techniques: A Survey
Sequential pattern mining is the process of applying data mining techniques to a sequential database, to extract frequent subsequences to discover correlation that exists among the ordered list of events. Web Usage mining (WUM) discovers and extracts interesting knowledge/patterns from Web logs is one of the applications of Sequential Pattern Mining. In this paper, we present a survey of the se...
متن کاملA Survey of Sequential Pattern Mining
Discovering unexpected and useful patterns in databases is a fundamental data mining task. In recent years, a trend in data mining has been to design algorithms for discovering patterns in sequential data. One of the most popular data mining tasks on sequences is sequential pattern mining. It consists of discovering interesting subsequences in a set of sequences, where the interestingness of a ...
متن کاملEfficient Analysis of Pattern and Association Rule Mining Approaches
The process of data mining produces various patterns from a given data source. The most recognized data mining tasks are the process of discovering frequent itemsets, frequent sequential patterns, frequent sequential rules and frequent association rules. Numerous efficient algorithms have been proposed to do the above processes. Frequent pattern mining has been a focused topic in data mining re...
متن کاملApproximate Frequent Pattern Mining
Frequent pattern mining has been a focused theme in data mining research and an important first step in the analysis of data arising in a broad range of applications. The traditional exact model for frequent pattern requires that every item occurs in each supporting transaction. However, real application data is usually subject to random noise or measurement error, which poses new challenges fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012