Nucleosome stability dramatically impacts the targeting of somatic hypermutation.

نویسندگان

  • Prashant Kodgire
  • Priyanka Mukkawar
  • Justin A North
  • Michael G Poirier
  • Ursula Storb
چکیده

Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is initiated by the activation-induced cytidine deaminase (AID). However, the influence of chromatin on SHM remains enigmatic. Our previous cell-free studies indicated that AID cannot access nucleosomal DNA in the absence of transcription. We have now investigated the influence of nucleosome stability on mutability in vivo. We introduced two copies of a high-affinity nucleosome positioning sequence (MP2) into a variable Ig gene region to assess its impact on SHM in vivo. The MP2 sequence significantly reduces the mutation frequency throughout the nucleosome, and especially near its center, despite proportions of AID hot spots similar to those in Ig genes. A weak positioning sequence (M5) was designed based on rules deduced from published whole-genome analyses. Replacement of MP2 with M5 resulted in much higher mutation rates throughout the nucleosome. This indicates that both nucleosome stability and positioning significantly influence the SHM pattern. We postulate that, unlike RNA polymerase, AID has reduced access to stable nucleosomes. This study outlines the limits of nucleosome positioning for SHM of Ig genes and suggests that stable nucleosomes may need to be disassembled for access of AID. Possibly the variable regions of Ig genes have evolved for low nucleosome stability to enhance access to AID, DNA repair factors, and error-prone polymerases and, hence, to maximize variability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation.

Somatic hypermutation and clonal selection lead to B cells expressing high-affinity antibodies. Here we show that somatic mutations not only play a critical role in antigen binding, they also affect the thermodynamic stability of the antibody molecule. Somatic mutations directly involved in antigen recognition by antibody 93F3, which binds a relatively small hapten, reduce the melting temperatu...

متن کامل

Checkpoint kinase 1 negatively regulates somatic hypermutation

Immunoglobulin (Ig) diversification by somatic hypermutation in germinal center B cells is instrumental for maturation of the humoral immune response, but also bears the risk of excessive or aberrant genetic changes. Thus, introduction of DNA damage by activation-induced cytidine deaminase as well as DNA repair by multiple pathways need to be tightly regulated during the germinal center respons...

متن کامل

Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation.

Activation-induced cytidine deaminase (AID) initiates Ig class switch recombination and somatic hypermutation by producing U:G mismatches in DNA. These mismatches also have the potential to induce DNA damage including double-stranded breaks and chromosome translocations; therefore, strict regulation of AID is important for maintaining genomic stability. In addition to transcriptional regulation...

متن کامل

Effects on Somatic Hypermutation: Intact Primary Mechanism Accompanied by Secondary Modifications

Somatic hypermutation of Ig genes is probably dependent on transcription of the target gene via a mutator factor associated with the RNA polymerase (Storb, U., E.L. Klotz, J. Hackett, Jr., K. Kage, G. Bozek, and T.E. Martin. 1998. J. Exp. Med. 188:689–698). It is also probable that some form of DNA repair is involved in the mutation process. It was shown that the nucleotide excision repair prot...

متن کامل

Classical Mus musculus Igκ Enhancers Support Transcription but not High Level Somatic Hypermutation from a V-Lambda Promoter in Chicken DT40 Cells

Somatic hypermutation (SHM) of immunoglobulin genes is initiated by activation-induced cytidine deaminase (AID) in activated B cells. This process is strictly dependent on transcription. Hence, cis-acting transcriptional control elements have been proposed to target SHM to immunoglobulin loci. The Mus musculus Igκ locus is regulated by the intronic enhancer (iE/MAR) and the 3' enhancer (3'E), a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 32 10  شماره 

صفحات  -

تاریخ انتشار 2012