miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway
نویسندگان
چکیده
MiRNAs have been reported to regulate gene expression and be associated with cancer progression. Recently, miR-424-5p was reported to play important role in a variety of tumors. However, the role and molecular mechanisms of miR-424-5p in GC (gastric cancer) remains largely unknown. In this study, we aimed to explore the role of miR-424-5p in GC. QRT-PCR was used to determine the expression levels of miR-424-5p and Smad3. CCK8 assay, plate clone assay and cell cycle assay were used to measure the effects of miR-424-5p on GC cell proliferation. Luciferase reporter assay and western blotting were used to prove that Smad3 was one of the direct targets of miR-424-5p. Tumorigenesis assay was used to investigate the role of miR-424-5p in tumor growth of GC cells in vivo. We found that miR-424-5p was up-regulated in GC tissues and cells. Over-expression of miR-424-5p could promote the proliferation of GC cells. In addition, luciferase reporter assay and western blotting assay revealed that Smad3 was a direct target of miR-424-5p. Over-expression of Smad3 could partially reverse the effects of miR-424-5p on GC cell proliferation. Our study further revealed that miR-424-5p could inhibit TGF-β signaling pathway by Smad3.
منابع مشابه
LAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...
متن کاملCorrection: miR-424-5p promotes proliferation of gastric cancer by targeting Smad3 through TGF-β signaling pathway
Present: The current funding acknowledgment information is incorrect. Correct: The proper funding information appears below. The authors sincerely apologize for this oversight. FUNDING This work was supported by the National Natural Science Foundation Project of International Cooperation (NSFC-NIH, 81361120398); the National Natural Science Foundation of China (81272712, 81572362); the Priority...
متن کاملMicroRNA regulatory pathway analysis identifies miR-142-5p as a negative regulator of TGF-β pathway via targeting SMAD3
MicroRNAs (miRNAs) are non-coding RNAs with functions of posttranscriptional regulation. The abnormally expressed miRNAs have been shown to be crucial contributors and may serve as biomarkers in many diseases. However, determining the biological function of miRNAs is an ongoing challenge. By combining miRNA targets prediction, miRNA and mRNA expression profiles in TCGA cancers, and pathway data...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملMiR-17-5p regulates cell proliferation and migration by targeting transforming growth factor-β receptor 2 in gastric cancer
TGFBR2 serves as an initial regulator of the TGF-β signaling pathway, and loss or reduction of its expression leads to uncontrolled cell growth and invasion. TGFBR2 plays a crucial role in the carcinogenesis and malignant process of gastric cancer, but the mechanism remains unclear. In this study, we found that TGFBR2 protein levels were consistently upregulated in gastric cancer tissues, where...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016